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Abstract

This paper is dedicated to study and to find the symbolic m-plithogenic units in many symbolic plithogenic rings for
some special values of m, where we present a full classification of many different symbolic n-plithogenic group of
units as direct products of well-known groups by building suitable and well-defined algebraic isomorphisms.
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1. Introduction

The computation of invertible elements (units) in commutative algebraic rings is one of the most important problems
in algebra, as well as the classification of the group generated by all units in a ring. The theory of logical rings based
on neutrosophic sets and their generalizations began with many works, see [14-16, 20-22], where we can find the
concept of neutrosophic ring, neutrosophic ideals, and homomorphisms. In [1], symbolic 2-plithogenic rings were
defined for the first time, and then they were generalized for higher orders [23-27] with many related algebraic
substructures based on them, such as spaces, matrices, and special elements [2-6, 17-19]. In [7-13], the group of units
of several logical rings was studied, such as n-cyclic refined neutrosophic units, and plithogenic units. This has
motivated us study and to find the symbolic m-plithogenic units in many symbolic plithogenic rings for some special
values of m, where we present a full classification of many different symbolic n-plithogenic group of units as direct
products of well-known groups by building suitable and well-defined algebraic isomorphisms.

2. Main Discussion

Definition:
Let R be a ring with U(R) as its group of units.
Let3 —spr = {x + yp, + zp, + tp; ; x,y,zt € R} be the corresponding 3-plithogenic ring, then:
UB—spg) ={X €3 —spg; Y €3 —spr: XY =YX = 1} is called the group of units of 3 — spp.
Theorem:
UB—spp)=UMR)XUR) XUR) XU(R)
Proof:
Define f:3 — spr = R X R X R X R such that:
flx+yp,+zp,+tps) =, x+y,x+y+z,x+y+z+t),
If xo 4+ Yyop1 + ZoP2 + toP3 = X1 + Y101 + Z1D; + typ3, then xo =x1,¥0 = ¥1,20 = 71, = t;, hencef(xo +
Yob1 + Zopz + tops) = f(x1 + y1p1 + 2102 + t1p3).
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Assume that X = xO + yopl + Zopz + t0p3,Y = xl + ylpl + lez + t1p3, we haVEX + Y = (xO + xl) + (yo +

v+ (2o + 2)p, + (o + t)ps,
f(X+Y)={(a,b,c,d);where:
a=xo+x,b=xg+x,+y,+¥,
cC=Xg+xX1+yo+ys+29+2;
d=xo+x,+yo+y1+z0+z,+t;+t;

Thus fF(X+Y) = (xg, %0 + Yo, Xo + Vo + 2oy Xo + Yo + 2o + to) + (X, X, + Y1, X1 +y1 + 2,6 +y, + 2, + ) =

fX) + f().

Also, XY =xox; + 01 (%Y1 + YoX1 + VoY1) + D2(X021 + YoZ1 + Zo21 + ZoXy + ZoY1) + D3(Xoty + Yoty +

Zoty + toxy + toyy + tozg + toty),

FXY) = (x0, X0 + Yo, %o + Yo + 2o, %o + Yo + 2o + to) (X1, %1 + Y1, %1 +¥1 + 21, % +y1 + 2, + ) = FEOf (V).

If f(X)=0,thenX = 0.

For every (x,y,z,t) € (R)*, there exists:

X=x+W—-x)p, +(2z—y)p, + (t — 2)p; € 3 — spg such that:
f(X) = (x,y,z,t), hence (f) is a ring isomorphism.

This means that 3 —spr = R X R X R X R, and:

UB —spr) =UR) X U(R) X U(R) X U(R).

Example:

For R = (Z;,+,), then 3 —spz, = {x + yp1 + zp, + tps ; x,y,2,t € Z3}.
U(B—spz,) =Z, X Zy X Zy X Z,.

To find all units in 3 — sp,, we write the units of (Z3)*:

e; = (1L,L1,1,1),e;, = (1,1,1,2),

e; = (1,1,2,1),e, = (1,2,1,1),

es = (2,1,1,1),es = (2,2,2,2),

e; = (2,2,2,1),eg = (2,2,1,2),

ey = (2,1,2,2),e10 = (1,2,2,2),

e1; = (1,1,2,2),e;, = (1,2,1,2),

e;s = (2,2,1,1),e, = (2,1,2,1),
eis = (2,1,1,2),e16 = (1,2,2,1).
Thus: UB —spg) = {f"(e1) = 1,f(ex) = 1 +ps,
fH(es) =1+ p, +2ps, f 1 (es) =1+ p; + 2p,,
f(es) =2+ 2p;, f (&) = 2,
f'(e;) = 2+ 2p3, [~ (eg) = 2+ 2p, + p,
fMeq) =2+ 2p; + o f M (e10) =1+ s,
f'e1) =1+p, fl(erz) =1+ p; +2p, + 13,
f ' (e13) = 2+ 2p,, f M (e1s) = 2+ 2p; + p, + 2p;,
f 7 (e1s) = 2 +2py + 3, f (e15) = 1+ py + 2p3}.
Example:
For R = (Zy,+,), U(3 — spz,) = Zy X Zy X Z X Z,.
The unitsof R X R X R X R are:
e, = (1,11,1),e, = (1,1,1,3),
es = (1,1,3,1), e, = (1,3,1,1),
es = (3,1,1,1), e, = (33,3,3),
e, = (333,1), e, = (33,1,3),
es = (3,1,33), €0 = (1,3,3,3),
e = (1,1,33), e, = (33,1,1),

913 = (1,3,3,1), 814 = (3,1,1,3),
e;s = (3,1,3,1),e.5 = (1,3,1,3).
The units of 3 — sp,, are:
U(3 - spz4) ={f"Ye) =11"1ey) =1+ 2ps,
f_1(93) =1+2p, + 2P4'f_1(e4) =1+ 2p; + 2p,,
f_l(es) =3+ 2p1,f_1(611) =1+ 2p2,f_1(e7) =3+ 2p,,
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f'(eg) = 3+ 2p, +2p4, f M (eg) = 3 + 2p; + 2p,,
f (e10) =1+ 2p;,f 7 (eg) =3, f H(e12) =3 + 2py,
f (e13) = 1+ 2p; +2ps f 1 (e14) = 3 + 2p; + 2p,,
[l (e1s) =3+ 2p; + 20, + 2p4, f 1 (e16) = 1+ 2py + 2p; + 2p4}-
Example:
ForR = (Z,+,),UQB —spy) = Z, X Zy X Zy X Z,.
The units of Z* are:
e; = (1,1,1,1),e, = (1,1,1,-1),
e; =(1,1,-1,1),e, = (1,-1,1,1),e5s = (—1,1,1,1),
ee = (—1,-1,-1,-1),e;, = (—1,-1,-1,1),
eg = (—1,-1,1,-1),eq = (-1,1,—-1,-1),
eo=01,-1,-1,-1),e,; = (1,1,-1,-1),
e, =(-1,-1,1,1),e;5=(01,-1,-1,1),e;, = (-1,1,1,-1),

eis = (—1,1,-1,1), e, = (1,—-1,1,-1).
The units of 3 — sp, are:

UB—spz) ={f"(er) =1,f () = 1~ 2ps,

f'(es) =1—2p, + 2ps, f ' (es) = 1 —2p; + 2p,,
f(es) = =1+ 2p;, f71(es) = —1,
f(e;) = =1+ 2ps, f~(eg) = —1 + 2p, — 2p3,
f(eg) = =1+ 2p; — 2p,, f M (e1o) = 1= 2py,
f7He1) = 1=2p,, f M (e1z) = =1+ 2p,, f 7 (e13) = 1 —2p; + 2ps,

f_l(eu) =-1+2p, — 2p3,f_1(615) =-1+2p, —2p, + 2p3:f_1(e16) =1-2p; +2p, — 2ps}.

Example:
For R = (Zs,+,), then U(R) = Z,and U(3 — spy,) = Zy X Zy X Zy X Z,.
We will find 101 units of 256 possible units:
e; = (1,1,1,1),e, = (1,1,1,2),e5 = (1,1,2,1),
e, = (1,2,1,1),es = (2,1,1,1), ¢4 = (1,1,1,3),
e; = (1,1,3,1),e5 = (1,3,1,1),e5 = (3,1,1,1),
eio = (3,3,3,3),e;1 = (1,1,1,4), 6,5, = (1,1,4,1),
e;s = (1,4,1,1),e1, = 4 1,1,1), 65 = (4,4,4,4),
e = (2,2,2,1),e17 = (2,2,1,2),e,5 = (2,1,2,2),
e1q = (1,2,2,2), e,0 = (3,3,3,1), €51, = (3,3,1,3),
e, = (3,1,3,3),e55 = (1,3,3,3)e,4 = (4,4,4,1),
eys = (44,1,4),e56 = (4,1,4,4), 257, = (1,4,4,4),
e5 = (2,2,2,3), €59 = (2,2,3,2), e3¢ = (2,3,2,2),
es1 = (3,2,2,2),e5, = (2,2,2,4),e33 = (2,2,4,2),
esq = (2,4,2,2),e35 = (4,2,2,2),e35 = (3,3,3,4),
es; = (3,3,4,3),e35 = (3,4,3,3), e39 = (4,3,3,3),
es0 = (1,1,2,2),e41 = (2,2,1,1),e4, = (1,2,2,1),
ess = (2,1,1,2),e4, = (1,2,1,2), 45 = (2,1,2,1),
ess = (3,3,1,1),e47 = (1,1,3,3), e45 = (3,1,1,3),
es = (1,3,3,1),e50 = (3,1,3,1),e5, = (1,3,1,3),
es, = (4,4,1,1),es5 = (1,1,4,4),e4 = (1,4,4,1),
ess = (4,1,1,4),es6 = (1,4,1,4),e5;, = (4,1,4,1),
esg = (2,2,3,3), €59 = (3,3,2,2), ¢4 = (2,3,3,2),
ee1 = (3,2,2,3),e4, = (3,2,3,2), €65 = (2,3,2,3),
ees = (2,2,4,4), 665 = (4,4,2,2), 866 = (2,4,4,2),
eo7 = (4,2,2,4), €55 = (2,4,2,4), 669 = (4,2,4,2),
e;o = (3,3,4,4),e;,1 = (4,4,3,3),e7, = (4,3,3,4),
e;3 = (3,44,3),e;4, = (3,4,3,4),e;5 = (4,3,4,3),
es6 = (2,2,2,2), €77 = (4,4,4,4),e,5 = (1,2,3,4),
e;9 = (2,1,3,4),eg0 = (1,2,4,3),e5; = (2,1,4,3),
egy = (1,3,2,4),e55 = (1,3,4,2)eg, = (3,1,2,4),
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egs = (3,1,4,2),e5 = (1,4,2,3),eg; = (1,4,3,2),

egg = (4,1,2,3),eg59 = (4,1,3,2), 69 = (2,3,1,4),

eq; = (2,3,4,1),eq, = (3,2,1,4), 95 = (3,2,4,1)

eos = (2,4,1,3), €95 = (2,4,3,1), €96 = (4,2,1,3),

eg; = (4,2,3,1),e95 = (3,4,1,2), €99 = (3,4,2,1),
€100 = (4,3,1,2),e101 = (4,3,2,1).
The corresponding units of U(3 — sp, ) are:

f_l(el) = 1,f_1(€2) = 1 + p3!f_1(63) = 1 + p2 + 4p3!
f_1(€4) =1+p + 4P2vf_1(es) =2+ 4P1,f_1(ee) =1+ 2ps,

fH(es) = 1+42p, +3ps, f ' (eg) = 1+ 2p; +3p,, f 7 (eg) =3+ 3py, fH(e10) =3, f M) =1+
+3p3, fTH(e12) = 1+ 3p, + 2p3, f M (e13) = 1+ 3p; +2p,, f (1) =4+ 2p1, f M (es) =4, f H(es) =2+
4ps, fH(e17) = 2+ 4p, +p3, [ M (e1g) = 2+ 4Py + P2 f M (e19) = 1+ py, f M (ez0) =3+ 3ps, f M (ez1) =3 +
3Py +2p3, f M (e2z) = 3+ 3py +2p,, f M (e23) = 1+ 2py, f 1 (ez4) = 4+ 2p3, f M (ep5) = 4+ 2p, +
3ps, f 1 (e26) = 4+ 2py +3p,, f 1 (e27) = 14+ 3py, f M (e28) = 2+ p3, [ (e20) = 2+ pp +4p3, f " (e30) =
2+ +4p,, [ (e31) =3+ +4py, [ (e35) = 2+ 2ps, £ (e33) = 2+ 2p, + 3ps, f N (e3a) = 2+ 2p; +
3p2, f 7 (e3s) = 4 +3py, f (es6) =3+ s, f T (e37) =3 +py +4ps, f T (e3g) = 3+ py +4p,, f T (e30) =
4+4p;, f (eao) = 1+ D f(ear) =2 +4p,, f M (eaz) = 1+ +4ps, f 1(eaz) = 2+ 4p; + s, f 1 (e4a) =
1+py +4p, + D3, f " (eas) = 2+ 4p; + pp +4ps, [ (e46) =3 +3p,, f 1 (ea7) = 1+ 2p,, f M (eag) =3+
3p1 + 2p3, f "M (e4o) = 1+ 2p;y + 3ps, £ (eso) = 3+ 3p; + 2p, + 3ps, f M (es1) = 1+ 2p; + 3p, +
2ps3, f 1 (es2) = 4+ 2p,, f M (es3) = 14 3p,, f 7 (esa) = 1+ 3p; + 2p3, f " (ess) = 4 + 2p; + 3ps, f ' (ese) =
1+3p; +2p, +3ps, f M (esy) = 4+ 2py + 3p, +2p3, f M(esg) = 2+ p2, f M (es9) =3+ 4p,, f(es0) = 2 +
P1+4ps, f T (ee1) = 3+ 4p;s + s, f T (e62) = 3+ Py +4ps, [ (€63) =2+ py +4p, + 3, f N (€6a) = 2+
2p,, f M (egs) = 4+ 3p,, f M (ege) = 2+ 2py + 3ps, fH(es7) = 4+ 3py + 2p3, f ' (ess) = 2+ 2p; + 3p, +
2p; +2p3, f (ego) = 4+ 3ps + 2p, +3p3, f M (e70) =3+ P2, f T (e71) =4+ 4p,s, f T (eg2) =4+ 4p, +
P3’f_1(e73) =3+p + 4p3,f_1(e74) =3+p +4p, + P3xf_1(e75) =4+4p, +p, + 4P3'f_1(€76) =
Z'f_l(e77) = 4’f_1(e78) =1+p +p, + Psrf_l(em) =2+4p, +2p, + p3:f_1(680) =1+4+p, +2p, +
4P3’f_1(981) =2+4p, +3p; + 4P3:f_1(382) =1+2p, +4p, + 2p3:f_1(683) =1+4+2p,+p, +
3P3’f_1(984) =3+3p,+p. + 2P3:f_1(ess) =3+3p, +3p, + 3p3:f_1(686) =1+4+3p, +3p; +
D3, f " (eg7) = 1+ 3py +4p, + 4ps, [ (egg) = 4+ 2p; + pp + s, f " (ego) = 4+ 2p; + 2p, +
4ps, [ (ego) = 2+ py +3p, +3ps, f N (e91) = 2+ py + 2+ 2p3, f M (eg2) = 3+ 4p; + 4p, +
3p3, [ (eo3) = 3+ 4py + 2p, + 2p3, f 1 (e9s) = 2+ 2p; + 2p, + 2p3, f(egs) = 2+ 2p; + 4p, +
3p3, f M (egs) = 4+ 3py +4p, + 2p3, f M (e97) = 4+ 3p; +py +3ps, f M (egg) =3 +py + 2p, +
D3, f " (eg9) =3 +p1 +3p, +4p3, f T (e100) = 4 + 4Py + 3P, + 03, f T (€101) = 4 + 4p; + 4p, + 4ps.
By continuoing the same argument, we get the rest of the units.

3. Results
We will write all the computed units in table called the units table of the symbolic plithogenic ring.

Table 1: Units table of 3 — sp,

Unitin (Z3)* Corresponding Unitin 3 — sp,,
(1,1,1,1) 1 1
(1,1,1,2) 1+ ps 2
(1,1,2,1) 1+ p, +2p; 3
(1,2,1,1) 1+p +2p, 4
(2111111) 2+ 2p1 5
(2,22.2) 2 6
(2,2,2,1) 2+ 2p, 7
(2,21,2) 2+ 2p, +ps3 8
(2,1,2,2) 2+2p; +p, 9
(1,2,2,2) 1+p, 10
(1,1,2,2) 1+p, 11
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(1,2,1,2) 1+p, +2p, +p; 12
(2,2,1,1) 2+ 2p, 13
(2,1,2,1) 2+ 2p; +p, + 2p; 14
(2,1,1,2) 2+2p; +p; 15
(1,2,2,1) 1+ p; +2p; 16
Table 2: Units table of 3 — sp,
Unitin (Z,)* Corresponding Unitin 3 — spg,
(1,1,1,1) 1 1
(1,1,1,3) 1+2ps 2
(1,1,3,1) 1+ 2p, +2p, 3
(1,3,1,1) 1+ 2p, + 2p, 4
(3,1,1,1) 3+ 2p; 5
(3,3,3,3) 3 6
(3,3,3,1) 3+ 2p, 7
(3,3,1,3) 3+ 2p, + 2p, 8
(3,1,3,3) 3+ 2p, +2p, 9
(1,3.3,3) 1+ 2p, 10
(1,1,3,3) 1+ 2p, 11
(3,3.1,1) 3+ 2p, 12
(1,3.3,1) 1+ 2p, + 2p, 13
(3,1,1,3) 3+ 2p, +2p, 14
(3,1,3,1) 3+ 2p; +2p, + 2p, 15
(1,3,1,3) 1+ 2p; +2p, + 2p, 16
Table 3: Units table of 3 — sp,

Unitin (2)* Corresponding Unit in 3 — sp,
(1,1,1,) 1 1
(1,1,1,-1) 1—2p, 2
(1,1,-1,1) 1—2p, + 2p; 3
(1,-1,1,1) 1-2p, +2p, 4
(-1,1,1,1) -1+ 2p, 5
(-1,-1,-1,-1) -1 6
(-1,-1,-1,) —1 + 2p; 7
(-1,-1,1,-1) —1+2p, — 2p, 8
(-1,1,-1,-1) —1+42p, —2p, 9
(1,-1,-1,-1) 1-—2p, 10
(1,1,-1,-1) 1—2p, 11
(-1,-1,1,1) —1+42p, 12
(1,-1,-1,1) 1—2p; +2p, 13
(-1,1,1,-1) —1+42p, — 2ps 14
(-1,1,-1,1) —1 4 2p, — 2p, + 2p; 15
(1,-1,1,-1) 1—2p; +2p, — 2p; 16

4, Conclusion

In this paper, we study and find the symbolic m-plithogenic units in many symbolic plithogenic rings for some special
values of m, where we presented a full classification of many different symbolic n-plithogenic group of units as direct
products of well-known groups by building suitable and well-defined algebraic isomorphisms.
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