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Abstract

In the domain of optimization, linear programming (LP) is recognized as an exceptionally effective method
for ensuring the most favorable outcomes. Within the context of LP, the minimum cost flow (MCF) problem
is fundamental, with its primary objective being to reduce the transportation costs for a single item moving
through a network, under the constraints related to capacity. This network is made up of supply nodes, directed
arcs, and demand nodes and each arc has an associated cost and capacity constraint, these factors are certain.
However, in practical scenarios, these factors are susceptible to variation due to causal uncertainty. The neu-
trosophic set theory has surfaced as a challenging approach to tackle the uncertainty that is often encountered
in optimization processes. In this manuscript, our primary objective is to address the minimal cost flow (MCF)
problem while accounting for the uncertainty inherent in the neutrosophic set. We specifically focus on the cost
aspect as SVTN numbers and introduce a new approach based on a customized ranking function handmade
for the MCF problem a pioneering endeavor within the field of neutrosophic sets. Additionally, we present
numerical example to validate the effectiveness and robustness of our model.

Keywords: LPP; Minimal cost flow; Uncertainty; Neutrosophic set; SVTN numbers; Triangular neutrosophic
MCF problem.

1 Introduction

In various industries and domains, decision-making and problem-solving are facilitated by Operations Re-
search (OR), a pivotal discipline. Process optimization is permitted and elaborate decision scenarios are tack-
led by this powerful tool. Within the field, LP is recognized as a key optimization technique. The main aim of
LP is to find optimal values for decision variables that satisfy all constraints while the objective functions are
max or min.LP has a wide range of applications, including network flow problems, Job scheduling, transporta-
tion problems, resource allocation, and so on. The various researchers working in the field of optimization
problems as Klein and Hannan1 presented a technique for solving the MOILP problem that identifies some
or all efficient solutions and Cavory et al.2 propose an innovative method that combines a genetic algorithm
with a scheduler to address job shop scheduling problems under linear constraints. Furthermore, Fisher et al.3
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introduce a new approach that leverages the primal-dual ascent algorithm to address both the traveling sales-
man problem and the network scheduling problem. Ren and Gao4 established a MILP model for the integrated
plan and assessment of DER systems. For solving possibilistic LP models Lai and Hwang5 introduced a new
method to tackle an auxiliary MOLP model to address LP problems that had uncertain objectives and constraint
coefficients. Nazemi and Omidi6 have proposed an optimization approach to address the maximum flow prob-
lem arising from extensive applications for neural networks in various environments. Chen7 proposed a new
version of the MCF problem. This version added a fixed cost to the model and aimed to reduce the average cost.

Network problems primarily encompass three distinct types of network problems: the shortest path, maximal
cost flow, and minimal cost flow problems. The Minimal Cost Flow (MCF) is a significant and practical net-
work flow model that includes demand nodes, supply nodes, and linear flow costs on the edges of a network
graph. The objective of the MCF problem is to transmit flow from a collection of supply nodes, through the
arcs of a network, to a set of demand nodes, all at a total minimal cost. To solve the classical MCF problem
many researchers in this field such as Minoux8 address the challenge of solving integer MCF problems involv-
ing convex separable cost functions on the arcs, while also considering truthfulness constraints on the flows.
Goldberg’s9 scaling push-relabel method represents a significant theoretical advancement in MCF algorithms.
In contrast, Goldfarb and Jin10 have proposed a novel algorithm to solve the MCF problem. During each phase,
the algorithm ensures at least one flow augmentation by directly utilizing the given data, the original network,
and a scaling factor. Additionally, Gopalakrishnan et al.11 explore how the unique least-squares properties of
node and arc incidence matrices in network flow problems can be effectively utilized in a quick primal-dual
least-squares algorithm to solve the MCF problem. Furthermore, Brand et al.12 introduce new randomized
algorithms that improve runtime for solving MCF problems with polynomially bounded capacities and cost,
treating them as LP problems with two-sided constraints.

Building upon the above literature, the classical MCF problem encompasses factors such as cost, supply, de-
mand, and capacity. While the standard MCF formulation assumes these factors are certain and definite, but
real-world scenarios introduce uncertainty, leading us to explore novel approaches. To handle these situations
there are some theories like probability theory, vagueness theory, and fuzzy theory have emerged to address
uncertainty in real situations. Notably, Zadeh13 introduced the concept of fuzzy sets in 1965 as a means to
handle uncertain real-world conditions. Using fuzzy logic numerous researchers have made significant contri-
butions to the field of fuzzy MCF problems.

Bagherian14 approaches the MCF problem by considering parameters such as arc capacities, costs, and sup-
ply or demand as interval-valued FN. Muruganandam and Srinivasan15 present an innovative algorithm for
solving the uncertain transportation problem, where supply, demand, capacity, and cost are represented as
trapezoidal FN. They aim to minimize transportation costs in a capacitated network. Meanwhile, Bozhenyuk
et al.16 propose a novel approach that addresses both maximum flow and MCF problems in network scenar-
ios. They take into account parameters such as capacities and transport costs of one flow unit, represented
as triangular FN. Additionally, Akram et al.17 introduce an innovative approach that incorporates trapezoidal
pentagonal fuzzy (TrPF) numbers for capacities and flow parameters, along with a ranking method for defuzzi-
fication. Konstantakopoulos et al.18 developed a methodology for classifying multiple vehicle routing problem
variants related to goods transportation—a common challenge faced by logistics and distribution companies.
Researchers have widely applied theories and their extensions, such as fuzzy theory and its extensions, to
address problems involving uncertainty. Effectively addressing uncertainty in a fuzzy environment through
vague reasoning becomes challenging when challenged with indeterminate and inconsistent information. Ad-
dressing indeterminacy is a crucial responsibility for fostering unambiguous data, leading to the emergence
of the neutrosophic concept for explicit indeterminacy analysis, due to which F. Smarandache19 introduce the
concept of the Neutrosophic Set (NS) in 1999.

Neutrosophic sets, an advanced mathematical concept, extend fuzzy logic to effectively manage data that is
unclear, inconsistent, or incomplete. These sets focus on three critical measures: falsity (the degree to which
information is not true), indeterminacy (when information cannot be determined), and truth. unlike fuzzy sets,
which have membership levels between 0 and 1, neutrosophic sets operate within a unique range just above 0
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and just below 1. They find practical applications in modeling real-world scenarios with incomplete, incon-
sistent, or uncertain information. To handle these situations some researchers who work in neutrosophic envi-
ronments such as Das and Edalatpanah20 developed a new framework for solving ILP problems with TrNNS
using an aggregate ranking function. In their research, Das21 investigates a transportation problem involving
pentagonal Neutrosophic numbers, where parameters are uncertain. Meanwhile, Chakraborty et al.22 propose
innovative methods to de-neutrosoficate trapezoidal neutrosophic numbers, aiming to convert them into crisp
numbers. Additionally, Biswas and Dey23 address MOLP problems under a neutrosophic environment, lever-
aging neutrosophic fuzzy approaches. Their technique considers three distinct membership degrees to provide
decision-makers with potential values for optimization problems. Sinika and Ramesh24 contribute to this field
by proposing a novel de-neutrophication strategy using interval numbers instead of crisp numbers. Their arti-
cle provides an overview of this approach, introduces a new ranking technique based on interval numbers, and
explores extended neutrosophic LP. Furthermore, Das and Chakraborty25 introduce a novel pentagonal neu-
trosophic (PN) approach for solving LP problems. This method relies on a ranking function and transforms
the problem into its related to crisp LP form and Karak et al.26 propose a method to order SVTN numbers
based on their values and ambiguities. By applying a ratio ranking function, they transform neutrosophic LP
problems into crisp LP problems, which are then solved using computational methods.

1.1 Motivation and Novelties

The Neutrosophic set theory is a well-established approach for addressing uncertainty in optimization prob-
lems. The notion of the MCF problem within the context of the neutrosophic environment has been inves-
tigated by a select handful of scholars. The basic advantage of the neutrosophic set lies in its ability to aid
decision-makers by taking into account the degrees of truth, falsity, and indeterminacy. Notably, the degree
of indeterminacy is often regarded as an independent factor, contributing significantly to the decision-making
process. Our approach aims to overcome limitations, which tend to inflate the number of constraints larger
than the original problem. To address this drawback, we propose a novel solution strategy that leverages a
ranking function. This approach offers improved efficiency and effectiveness in solving MCF problems with
complex cost considerations. The novelties of this manuscript are as follows:

• We propose a new method that utilizes a ranking function to address the MCF problem, accounting for
the uncertainty inherent in neutrosophic sets a pioneering contribution in the field of neutrosophic set
literature.

• It provides a more efficient and realistic representation by taking into account all facets including falsity,
indeterminacy, and truthiness degree of the decision-making process.

1.2 Objective:

The manuscript details numerous challenges with current methods for tackling minimal cost flow (MCF) prob-
lems in real-life environments, which have led to the creation of a new approach that incorporates neutrosophic
logic into MCF problems. In this article, we present an innovative solution methodology for addressing the
MCF problem with neutrosophic cost parameters. The main objective of this manuscript is as follows:

• To tackle the MCF problems considering the uncertainty of the neutrosophic set, focusing especially on
the cost.

• To develop a new approach for solving NMFP with neutrosophic cost within the context of neutrosophic
uncertainty, where the cost factor is a pivotal element.

1.3 List of abbreviations throughout the article
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List of abbreviations

NS: “neutrosophic set.”

TrNNs: “Triangular neutrosophic numbers.”

MCF: “Minimum cost flow.”

T: “Initial node.”

TrpNNs: “Trapezoidal neutrosophic numbers.”

DER: “Distributed energy resources.”.

SVTN: “Single-valued triangular neutrosophic.”

MOLP: “multi-objective linear programming.”

NMFP: “Neutrosophic minimal flow problem.”

C: “Maximum capacity of the arc.”

TrNMCF: “Triangular neutrosophic minimum cost flow.”

SOLP: “Single-objective linear programming.”

ILP: “Integer linear programming.”

H: “Terminal node.”

FN: “Fuzzy numbers.”

MF: “Membership function.”

1.4 Structure of the Manuscript:

The structure of this article unfolds as follows: We commence with the introduction of basic definitions in the
preliminary section2. We articulate both the classical and Neutrosophic minimal cost flow problems and our
proposed methodology is then presented in Section 3. Following this, in Section 4, To demonstrate its efficacy,
we furnish an example. Finally, we conclude our article in the conclusion section.

2 Preliminaries

Within this portion, we introduce some basic operations and definitions that are used in the manuscript.

Definition 2.1. Neutrosophic Set:27 A set P̃neu in the discourse universal set V , is said to be NS if P̃neu ={(
v,
[
TP̃neu (v) , IP̃neu (v) , FP̃neu (v)

])
: v ∈ V

}
Where FP̃neu (v) : V → [0, 1], IP̃neu (v) : V → [0, 1],

and TP̃neu (v) : V → [0, 1] are defined as the falsity-MF FP̃neu (v), indeterminacy-MF IP̃neu (v) and truth MF

TP̃neu (v), of an element v in P̃neu and respectively. TP̃neu (v) , IP̃neu (v) , FP̃neu (v) satisfy the condition

0 ≤ TP̃neu (v) + IP̃neu (v) + FP̃neu (v) ≤ 3

A neutrosophic set is said to be an SVTN set,28 if v is a single-valued independent variable.

Definition 2.2. Single-valued triangular neutrosophic (SVTN) number:29

A set P̃Nneu =
〈(
p1n, p

2
n, p

3
n

)
,
(
α1
n, α

2
n, α

3
n

)
,
(
d1n, d

2
n, d

3
n

)〉
is called SVTN number if it defines a truth MF

T
P̃Nneu

(v), indeterminacy MF, I
P̃Nneu

(v) and the falsity-MF F
P̃Nneu

(v) of an element v in P̃Nneu is
defined as,
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T
P̃Nneu

(v) =



(
v−p1n
p2n−p1n

)
p1n ≤ v < p2n

1 p2n = v(
p3n−v
p3n−p2n

)
p2n < v ≤ p3n

0 otherwise

,

I
P̃Nneu

(v) =



(
α2
n−v

α2
n−α1

n

)
α1
n ≤ v < α2

n

0 α2
n = v(

v− α2
n

α3
n− α2

n

)
α2
n < v ≤ α3

n

1 otherwise

 and

F
P̃Nneu

(v) =



(
d2n−v

d2n−d1n

)
d1n ≤ v < d2n

0 d2n = v(
v−d2n

d3n−d2n

)
d2n < v ≤ d3n

1 otherwise


with the condition 0 ≤ T

P̃Nneu
(v) + I

P̃Nneu
(v) + F

P̃Nneu
(v) ≤ 3

Definition 2.3. Arithmetic Operations for SVTN number:30

Let P̃Nneu =
〈(
p1n, p

2
n, p

3
n

)
,
(
α1
n, α

2
n, α

3
n

)
,
(
d1n, d

2
n, d

3
n

)〉
and Q̃Nneu =

〈(
q1n, q

2
n, q

3
n

)
,
(
β1
n, β

2
n, β

3
n

)
,
(
f1n, f

2
n, f

3
n

)〉
be two SVTN numbers and Γ > 0 then-

(i) P̃Nneu ⊕ Q̃Nneu =

〈 (
p1n + q1n, p

2
n + q2n, p

3
n + q3n

)
,
(
α1
n + β1

n, α
2
n + β2

n, α
3
n + β3

n

)
,(

d1n + f1n, d
2
n + f2n, d

3
n + f3n

) 〉

(ii) P̃Nneu ⊗ Q̃Nneu =

〈 (
p1n.q

1
n, p

2
n.q

2
n, p

3
n.q

3
n

)
,
(
α1
n.β

1
n, α

2
n.β

2
n, α

3
n.β

3
n

)
,(

d1n.f
1
n, d

2
n.f

2
n, d

3
n.f

3
n

) 〉
(iii) Γ� P̃Nneu =

〈(
Γ.p1n,Γ.p

2
n,Γ.p

3
n

)
,
(
Γ.α1

n,Γ.α
2
n,Γ.α

3
n

)
,
(
Γ.d1n,Γ.d

2
n,Γ.d

3
n

)〉
Definition 2.4. 29 Let P̃Nneu =

〈(
p1n, p

2
n, p

3
n

)
,
(
α1
n, α

2
n, α

3
n

)
,
(
d1n, d

2
n, d

3
n

)〉
be an SVTN number and define

a ranking function Deneu : N (R)→ R such as

Deneu

(
P̃Nneu

)
=

1

12

[(
p1n + 2.p2n + p3n

)
+
(
α1
n + 2.α2

n + α3
n

)
+
(
d1n + 2.d2n + d3n

)]
where N (R) denotes a set of SVTN numbers characterized by a set of the real number R.

3 Our Proposed model

Before presenting our proposed algorithm, we introduce a sub-section that discusses the existing crisp model
in the minimum cost flow (MCF) problem and the approach involving the neutrosophic environment with the
NMFP with neutrosophic cost.

3.1 Existing crisp model in MCF problem
Let a directed graph Gη = (Nη,ℵη) is considered, where Nη = {1, 2, 3, ..., t} is the set of finite nodes and ℵη
represents the set of arcs.

τqt: Per-unit flow from the arc q to t.
Ckqt:Cost-per-unit flow from arc q to t.
`qt: Lower capacity from the arc q to t.
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pqt: Upper capacity from the arc q to t.
Υq: Represents the supply, demand, or transshipment node.

The node q is identified as a transshipment node if Υq equals 0. If Υq is less than 0, then the node q is identified
as a demand node. If Υq is greater than 0, then the node q is identified as a supply node.

The general formulation of the mathematical model for the classical MCF problem is to be considered as
follows:

Mini Z =
∑

(q,t)∈ℵη
Ckqt τqt

Subject to
∑

t:(q,t)∈ℵη
τqr −

∑
t:(t,q)∈ℵη

τtq = Υq, ∀q ∈ Nη (Flow conservation equations)

0 ≤ `qt ≤ τqt ≤ pqt ∀ (q, t) ∈ ℵη (Flow capacity constraints)

3.2 Transformation of the crisp model MCF problem into NMFP with neutrosophic cost

In this section, consider the scenario where we substitute the cost Ckqt convert into a neutrosophic cost per

unit flow C̃kηqt from arc q to t. Then the general formulation of the mathematical model for the NMFP with
neutrosophic cost is to be considered as follows:

Mini Õη ≈
∑

(q,t)∈ℵη

C̃kηqt τqt (1)

Subject to constraints ∑
t:(q,t)∈ℵη

τqt −
∑

t:(t,q)∈ℵη

τtq = Υq, ∀q ∈ Nη (2)

0 ≤ `qt ≤ τqt ≤ pqt ∀ (q, t) ∈ ℵη (3)

3.3 Algorithm: A novel approach for finding the NMFP with neutrosophic cost considering as SVTN
number for cost parameters

Let’s consider a directed graph whose arcs denote the SVTN cost per unit flow C̃kηqt from arc q to t. In this
section, our proposed algorithm by using a new ranking function tends to provide a novel methodology for
finding the NMFP with neutrosophic cost considering as SVTN number for cost parameters.
The steps of the algorithm are as follows table 1.

Table 1: The steps of the algorithm

Steps Algorithm
Step 01: Formulate the mathematical model of the problem by the model of equation 1 , 2 , and

3 .
Step 02: Transformation of the NMFP with neutrosophic cost obtained in step 01 into crisp

model MCF problem by using the definition 2.4
Step 03: Solve this MCF problem obtained in step 02 by using the existing methods or software

(LINGO 18.0) and obtain the NMFP with neutrosophic cost problem.
Step 04: Substitute all values τqt in the objective equation 1 to get the optimal value in the form

of an SVTN number is
〈(
p1∗n , p

2∗
n , p

3∗
n

)
,
(
α1∗
n , α

2∗
n , α

3∗
n

)
,
(
d1∗n , d

2∗
n , d

3∗
n

)〉
Step 05: The End
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To illustrate our proposed algorithm, we consider an example, a flow network shown in Figure 1.

4 Numerical Example

Let’s investigate an example of a network diagram, as presented below. This network consists of seven nodes
and fourteen arcs. Each arc’s cost is expressed using an SVTN number for the cost parameters. The objective
is to determine the flow within the network while minimizing the overall cost. See Figure 1 for the visual
representation of this flow network and using the data of table 2 .

Figure 1: The network consider for Solving MCF problem under neutrosophic environment
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Table 2: Consider the below data for Solving NMFP under neiutrosophic environment

T H Neutrosophic arc cost C
1 4 <(0.5,2.5,4.5),(1,2,3),(1.5,3.5,5.5)> 10

3 7 <( 1,5,8),(1.5,3,6.5),(4,7,9)> 90

1 3 <(1,4,7),(1,3,5),(3.5,6,7.5)> 40

3 4 <(2,4,6),(1.5,2.5,4.5),(3,5,7)> 20

1 5 <(1,3,5),(0.5,1.5,3.5),(3,4,6)> 15

4 7 <(15,20,25),(19,21,27),(17,20,24)> 20

2 5 <(1.5,2.5,3.5),(1,1.5,3),(2,3,4)> 40

4 6 <(20,25,30),(24,26,32),(22,25,29)> 30

2 4 <(1,1.5,4),(0.5,1,2.5),(2.25,3,4.25)> 80

4 5 <(10,15,20),(14,16,22),(12,15,19)> 15

2 3 <(1,2,3),(0.5,1.5,2.5),(1.5,2.5,3.5)> 50

5 7 <(15,20,25),(19,21,27),(17,20,24)> 100

3 6 <(1,5,8),(1.5,4.5,7.5),(4,6.5,9)> 100

5 6 <(13,18,23),(17,19,25),(15,18,22)> 15

Solution:
Step 01: To solve the problem, first of all, transform the above network into a mathematical model named
equation 4

Min
(
Õη
)

= 〈(0.5, 2.5, 4.5) , (1, 2, 3) , (1.5, 3.5, 5.5)〉 τ14 + 〈(1, 4, 7) , (1, 3, 5) , (3.5, 6, 7.5)〉 τ13+

〈(1, 3, 5) , (0.5, 1.5, 3.5) , (3, 4, 6)〉 τ15 + 〈(1.5, 2.5, 3.5) , (1, 1.5, 3) , (2, 3, 4)〉 τ25+
〈(1, 1.5, 4) , (0.5, 1, 2.5) , (2.25, 3, 4.25)〉 τ24 + 〈(1, 2, 3) , (0.5, 1.5, 2.5) , (1.5, 2.5, 3.5)〉 τ23+

〈(1, 5, 8) , (1.5, 4.5, 7.5) , (4, 6.5, 9)〉 τ36 + 〈(1, 5, 8) , (1.5, 3, 6.5) , (4, 7, 9)〉 τ37+
〈(2, 4, 6) , (1.5, 2.5, 4.5) , (3, 5, 7)〉 τ34 + 〈(15, 20, 25) , (19, 21, 27) , (17, 20, 24)〉 τ47+

〈(20, 25, 30) , (24, 26, 32) , (22, 25, 29)〉 τ46 + 〈(10, 15, 20) , (14, 16, 22) , (12, 15, 19)〉 τ45+
〈(15, 20, 25) , (19, 21, 27) , (17, 20, 24)〉 τ57 + 〈(13, 18, 23) , (17, 19, 25) , (15, 18, 22)〉 τ56.

(4)

Subject to constraints:

τ57 + τ56 − τ45 − τ25 − τ15 = 0; 0 ≤ τ47 ≤ 20; 0 ≤ τ57 ≤ 100
τ15 + τ14 + τ13 = 30; 0 ≤ τ14 ≤ 10; τ25 + τ24 + τ23 = 60; 0 ≤ τ15 ≤ 15
0 ≤ τ23 ≤ 50, − τ36 − τ46 − τ56 = −20; 0 ≤ τ25 ≤ 40; 0 ≤ τ24 ≤ 80;
0 ≤ τ37 ≤ 90; τ54 + τ46 + τ47 − τ14 − τ42 − τ34 = 0; 0 ≤ τ56 ≤ 15;

0 ≤ τ13 ≤ 40; 0 ≤ τ34 ≤ 20; τ37 + τ36 + τ34 − τ23 − τ13 = 0; 0 ≤ τ36 ≤ 100;
0 ≤ τ45 ≤ 15; 0 ≤ τ46 ≤ 30; −τ37 − τ47 − τ57 = −70;


(5)

After solving step: 02 and step 03
We obtain the basic variables τ13 = 30,τ14 = 0,τ15 = 0,τ23 = 50,τ24 = 0,τ25 = 10,τ34 = 0,τ36 = 10,τ37 =
70,τ45 = 0,τ46 = 0,τ47 = 0, τ56 = 10, τ75 = 0

Step: 04 and Step 05
Substitute all basic variables τqt in the objective equation 4 to get optimal value is in the form of SVTN
numbers as 〈(305, 825, 1265) , (355, 625, 1085) , (670, 1070, 1380)〉 and τ13 = 30,τ14 = 0,τ15 = 0,τ23 =
50,τ24 = 0,τ25 = 10,τ34 = 0,τ36 = 10,τ37 = 70,τ45 = 0,τ46 = 0,τ47 = 0,τ56 = 10,τ57 = 0
End
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Figure 2: The graphical representation of 〈(305, 825, 1265) , (355, 625, 1085) , (670, 1070, 1380)〉

In Figure 2, the graphical representation of the optimal solution of a given numerical example with SVTN
numbers〈(305, 825, 1265) , (355, 625, 1085) , (670, 1070, 1380)〉 is shown, with the yellow line depicting truth-
MF, the black dot depicting indeterminacy-MF, and the magenta dot depicting falsity-MF.

Conclusion

The minimum cost flow (MCF) problem aims to find the least cost way to move flow through a network,
considering factors like cost, supply, demand, and capacity. And also discusses the neutrosophic set theory
has surfaced as a challenging approach to tackle the uncertainty that is often encountered in optimization
processes. In this manuscript, we introduce a new algorithm using SVTN numbers to solve the NMFP with
neutrosophic cost, which also predicts crips MCF problems. By applying a ratio ranking function, they trans-
form neutrosophic LP problems into crisp LP problems, which are then solved using computational methods.
For this purpose, we used a numerical example to solve the NMFP with neutrosophic cost with SVTN num-
bers into crisp LP problems, by using the existing methods or software (LINGO 18.0) and obtain the NMFP
with neutrosophic cost problem. The new algorithms can be used for real-world issues like assignments, job
scheduling, and transportation in the future.
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