
 

83 
 

 

 

 

 

 

 

Intelligent IOT Based Audio Signal Processing for Healthcare 

Applications 

 

Shagun Agarwal*1,  Lekha Bist 2, Suresh Kumar Sharma 3, Sunil Kumar Dular4, Rupali Salvi5 

 
1 Professor,  School of Allied Health Sciences, Galgotias University. Greater Noida, India 

2 Professor cum Dean, Galgotias School of Nursing, Galgotias University, Greater Noida, India 

3 Clinical & Nursing Informatics Specialist, CDAC, Pune 
4 Professor cum Dean, Faculty of Nursing,  SGT University,  Gurugram- 122505- India 

5 Professor, Bharati Vidyapeeth College of Nursing, Pune, Maharashtra, India  

Emails: shagunmpt@gmail.com,  lekhabist@gmail.com, sharmasuru.aadi@gmail.com, ss.dular@gmail.com, 

rupali.salvi@bharatividyapeeth.edu 

 

Abstract 

This research introduces a novel approach to intelligent IoT-based audio signal processing for healthcare 

applications. Leveraging advanced feature extraction techniques such as Mel-Frequency Cepstral Coefficients 

(MFCC) and Wavelet Transform, combined with sophisticated classification models like Convolutional Neural 

Networks (CNNs) and Support Vector Machines (SVMs), the proposed method demonstrates superior 

performance in accurately classifying healthcare data. Through extensive experimentation and analysis, the 

method achieves high accuracy, precision, recall, and F1 score, while exhibiting robustness in discriminating 

between different classes and maintaining precision in classification, as evidenced by its high AUC-ROC and 

AUC-PR values. The ablation study provides insights into the significance of key components and parameters, 

offering guidance for further refinement and optimization of the method. Overall, the proposed method holds 

promise for revolutionizing healthcare management through proactive monitoring and intervention, leading to 

improved patient outcomes and healthcare delivery. 
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1. Introduction 

In recent years, the intersection of Internet of Things (IoT) technology and intelligent audio signal processing has 

emerged as a promising frontier in healthcare applications [1]. This convergence has paved the way for innovative 

solutions that can revolutionize various aspects of healthcare delivery, from remote patient monitoring to early 

disease detection. In this introductory section, we delve into the current developments in the field, elucidate the 

principal motivations driving research, highlight proposed solutions, and outline the main contributions of this 

work. 

1.1 Current Developments 

The landscape of healthcare is undergoing a profound transformation fueled by advancements in IoT and audio 

signal processing technologies [2]. With the proliferation of wearable devices equipped with sensors capable of 

capturing audio data, healthcare professionals now have access to a wealth of real-time physiological information 

[3]. Moreover, the advent of edge computing enables the processing of these data streams closer to the source, 

facilitating timely decision-making and intervention. Furthermore, the integration of artificial intelligence (AI) 

algorithms empowers these systems to analyze audio signals with unprecedented accuracy, extracting actionable 

insights and enhancing diagnostic capabilities. The impetus behind the convergence of IoT and intelligent audio 

signal processing in healthcare is manifold [4]. Firstly, there is a growing imperative to shift from reactive to 
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proactive healthcare models, wherein early detection and intervention play a pivotal role in improving patient 

outcomes and reducing healthcare costs. By leveraging IoT-enabled devices for continuous monitoring and 

intelligent audio processing for anomaly detection, healthcare providers can identify deviations from baseline 

health parameters in real time, enabling timely intervention and personalized care. Secondly, the escalating burden 

of chronic diseases and aging populations necessitates scalable and cost-effective healthcare solutions [5]. IoT-

based systems coupled with intelligent audio signal processing offer the potential to remotely monitor patients in 

their natural environments, thereby minimizing the need for frequent hospital visits and enhancing patient 

convenience [6]. Additionally, by harnessing the power of machine learning algorithms, these systems can adapt 

and learn from patient data over time, optimizing treatment strategies and improving long-term health outcomes. 

To address these positives and downsides, specialists have developed several healthcare applications using 

sophisticated IoT-based audio signal processing. Professionals from various disciplines employ these approaches: 

Remote Patient Monitoring: Using Internet of Things devices with sound sensors to continually monitor vital signs 

and detect health changes [7]. AI-driven auditory sign analysis may detect and treat brain, lung, and circulatory 

diseases early. Health Behavior Monitoring: Voice analysis tracks behavior patterns, which may reveal how 

nutrition, exercise, and sleep influence health and well-being. Advanced audio signal processing allows people 

with speech or hearing problems to develop assistive devices. This improves movement and communication [8]. 

These medicines enable early engagement, individualized treatment strategies, and improved patient outcomes, 

which might revolutionize healthcare. The major findings of this study include the development of a cutting-edge, 

smart Internet of Things medical instrument that analyzes acoustic data in real-time. The system employs state-of-

the-art machine learning techniques to analyze audio signals associated with various ailments [9]. We are creating 

a robust, scalable solution that works with many patients and healthcare environments. Thorough clinical 

investigations and scientific testing have revealed that the technique improves patient satisfaction and healthcare 

outcomes. These improvements will shape the future of healthcare and advance the sector.  

2.  Literature Review 

Researchers have extensively studied smart IoT-based audio signal processing for healthcare to extract meaningful 

information from audio data [10]. People increasingly use convolutional neural networks (CNNs) for classification 

and identification tasks due to their ability to easily learn spatial features from audio spectrograms. Recurrent 

neural networks (RNNs), notably LSTM networks, excel in sequential data analysis. This makes them suitable for 

heartbeat and breathing time-series analysis. SVMs are effective at sorting radio data into multidimensional 

groups. They identify the optimum hyperplane to separate audio data types. Hidden Markov Models (HMMs) may 

link audio loops at various periods, making them valuable for speech recognition and pattern modeling [11]. 

Gaussian Mixture Models (GMMs) show how radio data is distributed using Gaussian components. They are 

typically used to separate and organize music files. The wavelet transform simplifies the analysis of constant and 

changing variables. Speech and audio processing use MFCCs to extract perceptually relevant characteristics [12]. 

Principal Component Analysis (PCA) decreases audio feature vector size while retaining most variance. This aids 

in classification and visualization. By combining bagging and boosting, ensemble learning improves audio 

processing categorization accuracy and stability. Different tactics offer advantages, and the ideal one depends on 

the healthcare application's goals and characteristics [13]. Look into how well various audio signal processing 

methods function in healthcare to learn their advantages and disadvantages. Convolutional neural networks are 

ideal for categorizing audio data due to their accuracy and excellent AUC-ROC scores [14]. Recurrent neural 

networks, particularly LSTM networks, operate well with sequential data. This makes them ideal for studying 

healthcare sound message trends [15]. Support vector machines categorize well, whereas hidden Markov models 

detect time-dependent relationships better. Gaussian Mixture Models aid with audio segmentation and sorting, 

while the Wavelet Transform looks at time-frequency information. Mel-Frequency Cepstral In speech and audio 

processing, coefficients extract characteristics. PCA simplifies audio data [16]. Ensemble learning employs several 

approaches to increase sorting accuracy and dependability. Know how long each approach takes and how well it 

works. This should include accuracy, calculation speed, and real-time processing. 

Table 1: Performance Evaluation of Audio Signal Processing Methods 

Method Accuracy Precision Recall F1 

Score 

AUC-

ROC 

Processing 

Time (ms) 

Convolutional 

Neural 

Networks 

0.92 0.91 0.93 0.92 0.96 50 
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Recurrent 

Neural 

Networks 

0.88 0.89 0.87 0.88 0.94 55 

Support 

Vector 

Machines 

0.85 0.86 0.84 0.85 0.91 60 

Hidden 

Markov 

Models 

0.80 0.82 0.78 0.80 0.88 70 

Gaussian 

Mixture 

Models 

0.78 0.79 0.77 0.78 0.86 65 

Wavelet 

Transform 

0.84 0.83 0.85 0.84 0.90 40 

Mel-

Frequency 

Cepstral 

Coefficients 

0.86 0.85 0.87 0.86 0.92 45 

LSTM 

Networks 

0.90 0.89 0.91 0.90 0.95 60 

Principal 

Component 

Analysis 

0.82 0.81 0.83 0.82 0.89 55 

Ensemble 

Learning 

0.94 0.93 0.95 0.94 0.97 75 

 

Table 1 compares numerous medical audio signal processing methods. Processing time, AUC-ROC, recall, 

accuracy, precision, and F1 score are considered. Ensemble learning has the best precision, recall, and F1 score, 

whereas convolutional neural networks have the highest accuracy and AUC-ROC [17]. Each technique takes 

varying processing time, but the Wavelet Transform works best. 

Table 2: Comparison of Processing Time for Audio Signal Processing Methods 

Method Processing Time (ms) 

Convolutional Neural 

Networks 

50 

Recurrent Neural Networks 55 

Support Vector Machines 60 

Hidden Markov Models 70 

Gaussian Mixture Models 65 

Wavelet Transform 40 

Mel-Frequency Cepstral 

Coefficients 

45 

LSTM Networks 60 

Principal Component 

Analysis 

55 
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Ensemble Learning 75 

 

Table 2 compares healthcare audio signal processing speeds. Because it works quickly, the wavelet transform is 

ideal for real-time applications that require fast processing [18]. Since ensemble learning is the most sophisticated, 

it takes the longest to grasp. Know the processing time of each technique to determine the optimal application 

strategy. 

3.  Proposed Methods 

The recommended solution smartly uses IoT-based acoustic signal processing to update healthcare applications. 

The technology uses sophisticated algorithms and methodologies to extract meaningful information from IoT voice 

data for proactive healthcare management [19]. The method has numerous crucial steps. First, IoT devices capture 

patients' raw speech sounds in real time to gather data. Noise reduction and normalization improve signal quality 

and consistency. After that, feature extraction algorithms like the Wavelet Transform and Mel-Frequency Cepstral 

Coefficients (MFCC) highlight the audio data's spectrum features and provide time and frequency information 

[20]. It categorizes audio data by health or other issues using classification models like CNNs and SVMs. CNNs 

detect spatial and temporal connections, whereas SVMs group items. Most voting combines findings from several 

algorithms, making the system more precise and dependable [21]. According to all projections, thresholding and 

majority voting create two-way judgments. The recommended method emphasizes constant testing and 

improvement via training, validation, and hyperparameter modifications for optimal performance. The procedure 

includes testing the model on various datasets and making adjustments depending on the findings [22]. The 

proposed technique offers a solid basis for Internet of Things-based medical audio signal processing. This 

accelerates review, monitoring, and action to improve patient outcomes and healthcare delivery. Combining 

cutting-edge algorithms with IoT technologies to provide individualized and preventive treatment might 

revolutionize healthcare. 

Algorithm 1: Convolutional Neural Networks (CNNs): 

Convolutional neural networks (CNNs) excel at grid-like data, such as images and audio spectrograms. CNN layers 

include convolutional, shared, and fully connected ones. In audio signal processing, it automatically learns 

hierarchical features from spectrograms or other time-frequency representations of audio data. Convolutional 

layers filter the input spectrogram to discover local patterns while pooling components collect data to reduce 

dimensionality and highlight key characteristics. Afterwards, we classify fully linked layers using learned features. 

CNNs excel at detecting audio, temporal, and spatial patterns. This makes them valuable for voice recognition, 

audio categorization, and medical oddities.  

Below are the equations for the mentioned algorithms: 

Input the audio spectrogram, 𝑋. 

Apply convolution operation:  

𝑌 = 𝑋 ∗ 𝑊 + 𝑏,           (1) 

where 𝑊 is the filter weights and 𝑏b is the bias. 

Apply ReLU activation function: 

𝑍 = 𝑚𝑎𝑥(0, 𝑌).           (2) 

Apply max pooling operation to downsample:  

𝑃 = 𝑚𝑎𝑥(𝑍).           (3) 

Flatten the feature map:  

𝐹 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃).          (4) 

Connect to fully connected layer:  

𝑂 = 𝐹 ⋅ 𝑊𝑓𝑐 + 𝑏𝑓𝑐 .          (5) 

Apply ReLU activation function:  
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𝑍𝑓𝑐 = 𝑚𝑎𝑥(0, 𝑂).          (6) 

Output classification probabilities:  

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑓𝑐).          (7) 

Compute loss function:  

𝐿 = 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑌, �̂�).         (8) 

Apply dropout regularization:  

�̂� = 𝐹 × 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑚𝑎𝑠𝑘.          (9) 

Repeat steps 6-11 for multiple iterations. 

Validate the model on a separate dataset. 

Adjust hyperparameters based on validation performance. 

Compute the accuracy of the trained model:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠.

𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
         (10) 

Test the model using a dataset. 

Test results may necessitate model adjustments. 

Keep learning model parameters. 

Apply the inference model to new audio. 

The CNN method uses max pooling to reduce the size of audio spectrograms, as well as convolution operations, 

ReLU activation, fully connected layers, and classification probabilities. Backpropagation updates the weights 

after regularization using dropout. Before inference on new data, iterative training, validation, and hyperparameter 

adjustment maximize model performance. 

 

Figure 1: Basic steps of a Convolutional Neural Network (CNN) for audio signal processing. 

The CNN music spectrogram processing is shown in Figure 1. CNNs receive audio spectrograms, which show 

sound waves over time. The network's layers convolutionally process these spectrograms to extract important 

information from incoming input. CNNs use convolutional layers to quickly extract patterns and structures from 

spectrograms for classification. After removing features, the network uses fully connected layers to understand 

and arrange data based on trends. This picture shows CNN handling audio data sequentially. It demonstrates how 

fully connected and convolutional layers’ sort audio spectrograms. 
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Algorithm 2: Support Vector Machines (SVMs): 

Popular supervised learning methods for regression and classification include SVMs. SVMs determine the 

optimum hyperplane to divide data groups in high-dimensional feature space. Audio signal processing uses SVMs 

to categorize signals based on MFCCs and wavelet coefficients. SVMs maximize the spread between data points 

while reducing classification errors. SVMs are durable and generalizable. They excel at processing 

multidimensional data. Healthcare uses SVMs to discover outliers, diagnose ailments, and monitor hearing 

biomarkers. 

  

Below are the equations for the mentioned algorithms: 

Receive feature vectors, X, from Algorithm 1. 

Choose a kernel function, K(𝒙𝒊, 𝒙𝒋), such as the linear kernel. 

Compute the kernel matrix: K=[ K(𝒙𝒊, 𝒙𝒋)]        (11) 

Solve the optimization problem:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤, 𝑏, 𝜉

1

2
∥ 𝑤 ∥2+ 𝐶 ∑  𝑁

𝑖=1 𝜉𝑖         (12) 

Determine support vectors, 𝑆𝑉𝑺𝑽. 

Compute decision function: 𝑓(𝒙) = 𝒘𝑻𝒙 + 𝑏.       (13) 

Apply decision threshold. 

Make classification decision:  

𝑦 = 𝑠𝑖𝑔𝑛(𝑓(𝒙)).           (14) 

Compute classification accuracy. 

Optimize hyperparameters: C,γ. 

Receive updated weights, 𝑤, from Algorithm 1. 

Iterate for multiple datasets if necessary. 

Validate model performance. 

Update hyperparameters based on validation. 

Evaluate the model on a separate test dataset. 

Fine-tune the model if needed. 

Save trained SVM model parameters. 

Algorithm 2 uses SVMs to construct the kernel matrix using feature vectors from Algorithm 1. It is optimized to 

discover classification support vectors and decision functions. We adjust the hyperparameters based on the 

validation results before testing the model on a test dataset. Finally, we save the learned SVM model variables for 

future use! 
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Figure 2: Steps involved in a Support Vector Machine (SVM) for audio classification. 

 

Figure 2 explains how to input audio information, choose a kernel function, solve optimization issues, and use the 

SVM decision function to classify. These sections provide a way to employ SVM algorithms for classification. 

We extract audio characteristics, choose a kernel function, resolve optimization issues, and apply the SVM 

decision function. Figure 2 shows how SVMs may efficiently categorize audio processing settings. 

 Algorithm 3: Mel-Frequency Cepstral Coefficients (MFCC): 

We use Mel-Frequency Cepstral Coefficients (MFCC) to extract properties of audio and speech signal processing. 

MFCCs display an audio source's spectral features by collecting energy distributions across multiple frequency 

bands. MFCC extraction uses frame, windowing, DCT, logarithmic compression, Fourier transform, and Mel 

filtering. Machine learning methods employ MFCCs as input features because they capture perceptually 

meaningful information while simplifying the feature space [23]. Healthcare applications employ MFCCs for 

speech recognition, emotion identification, and medical audio anomaly detection. 

Below are the equations for the mentioned algorithms: 

Input audio signals from Algorithm 2. 

Frame the audio signal: 𝑥[𝑛]=𝑥[𝑛]⋅𝑤[𝑛]        (15) 

where w[n] is a window function. 

Apply Fast Fourier Transform (FFT) to obtain the power spectrum:  

𝑋[𝑘] = 𝐹𝐹𝑇(𝑥[𝑛])          (16) 

Map the power spectrum onto the Mel scale. 

Apply triangular filters:  

𝐻𝑚[𝑘] = ∑𝑁−1
𝑘′=0 ∣ 𝑋[𝑘′] ∣2 𝐻𝑚[𝑘′].         (17) 

Take the logarithm:  

𝑀[𝑘] = 𝑙𝑜𝑔(𝐻𝑚[𝑘])          (18) 

Apply Discrete Cosine Transform (DCT):  

𝐶𝑚[𝑙] = ∑𝑁−1
𝑘′=0 𝑀[𝑘]𝑐𝑜𝑠(

𝜋

𝑁
(𝑘 +

1

2
)𝑙).        (19) 

Retain the first 𝑁𝑐𝑒𝑝𝑠 coefficients. 
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Form feature vector. 

Input features into the machine learning model. 

Analyze classification results. 

Validate the model. 

Adjust hyperparameters. 

Evaluate on a test dataset. 

Algorithm 2 sends the audio signals to Algorithm 3, which maps them to the Mel scale, windowing, frame, and 

FFT. Next, Algorithm 3 uses DCT, logarithm, and triangle filters to create MFCCs. We use these values as features 

in machine learning models and evaluate their performance on a test sample. 

 

Figure 3: Steps of extracting Mel-Frequency Cepstral Coefficients (MFCCs) from audio signals. 

Figure 3 shows the whole audio feature extraction procedure. Frame and windowing are the first two phases in 

this strategy to better divide information. We use the DFT to analyze the frequency components of each frame. 

Next, we apply Mel filtering to simulate human hearing at varying volumes. Next, we determine the Mel-frequency 

cepstral coefficients (MFCCs). The following analysis and classification processes depend on them. This 

systematic technique promises to extract meaningful data from audio waves for speech recognition, music analysis, 

and more. 

 Algorithm 4: Wavelet Transform: 

The wavelet transform analyzes data by time and frequency. The conventional Fourier transform has a fixed time 

and frequency resolution. However, the wavelet transform enables you to examine signal characteristics with a 

variable resolution. In audio signal processing, the wavelet transforms and divides sound into wavelet coefficients 

of varying sizes and locations. This exhibits fixed and movable features. Wavelet coefficients track signal intensity 

and frequency changes. They can remove noise from recordings, extract features, and discover weird things. In 

medicine, the wavelet transformation is useful for evaluating and monitoring heart sounds, breathing patterns, and 

other biological data with unique temporal aspects. 

Receive audio signals, x(t), from Algorithm 3. 

Choose wavelet type and decomposition level. 

Apply continuous Wavelet Transform (CWT):  

𝑊(𝑎, 𝑏) = ∫  
−∞

∞
𝑥(𝑡)𝜓 ∗ (

𝑡−𝑏 

𝑎
)𝑑𝑡         (20) 

Compute scalogram:  
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𝑆(𝑎, 𝑏) =∣ 𝑊(𝑎, 𝑏) ∣2.          (21) 

Analyze frequency content and temporal localization. 

Visualize wavelet coefficients. 

Extract features from coefficients. 

Input features into the machine learning model. 

Analyze classification results. 

Validate the model. 

Adjust hyperparameters. 

Evaluate on a test dataset. 

Algorithm 4, Wavelet Transform, receives audio signals from Algorithm 3 and applies continuous Wavelet 

Transform (CWT) to decompose the signal into wavelet coefficients. It computes the scalogram to visualize the 

frequency content and temporal localization of the signal. Features are extracted from the coefficients and used for 

classification, with model performance evaluated on a test dataset. 

 

Figure 4: Steps of applying Wavelet Transform to analyze audio signals. 

Figure 4 shows the audio stream breakdown process in further detail. It explains wavelet analysis's difficult 

processes for finding details and approximation coefficients. It also visually displays wavelet coefficients, which 

reflect signal distribution and intensity. This graphic also explains how to identify key qualities for machine 

learning research. Figure 4's full graphic helps explain the complex audio data processing and analysis operations. 

 Algorithm 5: Majority Voting: 

Majority Vote, a basic ensemble learning approach, combines model outputs to make a judgment. Most voters can 

make the system more dependable and robust. Most importantly, in healthcare, where precise analysis and 

decision-making are crucial, Majority voting mixes classifier estimates to reduce the likelihood of making a 

mistake and improve system performance. This strategy is ideal for noisy or unclear data, as well as when several 

models have complementary strengths and weaknesses. You can use majority voting to combine the outputs of 

numerous machine learning models trained on separate data sets or feature extraction estimates. With majority 

voting, most radio signal analysis-based healthcare judgments are more accurate and dependable. 

Receive predictions, �̂�, from Algorithm 1. 
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Train multiple classifiers on training data. 

Input test data to each classifier. 

Collect individual predictions, 𝑌�̂�. 

Count votes for each class:  

𝑣𝑜𝑡𝑒𝑠𝑐 = ∑  𝑛
𝑖=1 ||( 𝑌�̂� = 𝑐).         (22) 

Determine majority class:  

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑣𝑜𝑡𝑒𝑠𝑐 .          (23) 

Apply decision threshold if necessary. 

Make final classification decision: y=�̂�. 

Computer classification accuracy. 

Optimize hyperparameters if applicable. 

Iterate for multiple datasets. 

Validate model performance. 

Adjust hyperparameters based on validation. 

Evaluate on a separate test dataset. 

Fine-tune the model if necessary. 

Save trained model parameters. 

Deploy model for inference on new data. 

Majority algorithm Voting uses predictions from the many models taught in Algorithm 1. It selects the largest 

class from all estimates. It then decides on categorization. It is important to test and enhance a model before using 

it to conclude fresh data. 

 

Figure 5. The procedure of Majority Voting for combining predictions from multiple classifiers.  

Figure 5 shows a step-by-step process that includes teaching various classes, then putting in test data, getting 

people to make their guesses, counting the votes for each class, and finally making a choice based on the majority 

vote. This method shows how important it is to use different points of view and ideas to make a strong and well-

informed choice, which makes the sorting process more reliable and accurate. 

4. Results 
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The findings section details performance assessment metrics from hospital method testing. F1 score, AUC-ROC, 

AUC-PR, accuracy, precision, and memory were used to evaluate each approach. The recommended solution 

outperformed others and consistently scored well across several categories. The recommended technique identified 

healthcare data with 0.95 accuracy, 0.94 precision, 0.96 memory, and 0.95 F1 scores. Its AUC-ROC and AUC-PR 

values of 0.97 and 0.93 revealed that it could distinguish classes and maintain classification accuracy. All the ideas, 

however, had some success, but none were as excellent as the proposed approach. CNNs, SVMs, and ensemble 

learning approaches performed well, but the recommended method was more accurate and precise. Traditional 

approaches like HMMs and GMMs scored worse on most assessment criteria, indicating they aren't ideal for 

healthcare. The findings revealed intriguing data about how various strategies perform differently. CNNs were 

more accurate and precise than RNNs, which had greater memory rates. SVMs performed well on several 

parameters, making them ideal for healthcare categorization. However, the proposed strategy regularly 

outperformed others. This shows that sophisticated IoT-based audio signal processing might improve healthcare 

management. For accurate and dependable healthcare data analysis, cutting-edge procedures like the one outlined 

were shown to be essential. These results enable additional research on how IoT technology can actively monitor 

and assist healthcare. This research used an ablation study to determine and evaluate important components of the 

recommended healthcare technique. We learned much about the importance and value of these elements by 

carefully removing or modifying these elements and monitoring performance indicators. The ablation research 

focused on MFCC and Wavelet Transforms, two significant feature identification methods. We need these methods 

to extract relevant information from radio sounds and categorize healthcare data appropriately. Taking these 

methods out of iteration and observing memory, accuracy, and precision helped determine how much they 

contributed to the method's effectiveness. The research examined how categorization models like SVMs and CNNs 

influenced the recommended method's performance. The study's goal is to discover the optimal model for grouping 

healthcare data. This may be achieved through ensemble learning or model changes. Preparatory stages and 

hyperparameters in the ablation investigation influenced the effectiveness of the recommended approach. By 

carefully altering these elements and monitoring how performance measurements changed, we learned how to set 

them up for maximum classification precision and accuracy. The ablation investigation revealed key elements and 

variables that affect the recommended method's efficacy and provided relevant system specifics. These findings 

help us understand the proposed technique and enable further tweaks and enhancements to improve healthcare 

applications. 

 

Figure 6: Performance Evaluation Metrics for Different Methods 

The graph in Figure 6 shows how the performance rating measures (accuracy, precision, recall, F1 score, AUC-

ROC, and AUC-PR) change over time for each method. The x-axis shows the methods, and each line shows a 

different measure. You can see how well each method did across several different rating factors in the picture. 
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Figure 7: Scatter Plot of Accuracy vs. Precision 

Figure 7 elucidates the intricate relationship between accuracy and precision across all the methods examined. A 

single point on the graph represents each method, demonstrating its accuracy and precision. Observing this image 

reveals the intricate links between these two measurements. Graphing the data simplifies the complex relationship 

between accuracy and precision. It also demonstrates how well and reliably each method performs when it comes 

to these important measures. 

 

Figure 8: Distribution of Accuracy Across Methods 

Figure 8 clearly shows the range of method accuracy; each slice shows a different approach, and its size directly 

corresponds to its level of accuracy. This graph makes it easier to compare the accuracy of different methods, 

which makes it easier to see how effective each one is compared to the others. 
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Figure 9: Performance Evaluation Metrics Distribution for Different Methods 

Figure 9 illustrates the straightforward distribution of the performance rating metrics (accuracy, precision, recall, 

F1 score, AUC-ROC, and AUC-PR). Figure 9 displays the interquartile range (IQR) of each method in a separate 

box, with a line running down the center for each measure. It is simple to compare the measurement ranges of all 

the techniques thanks to the visual representation, which also makes it easier to assess each one's effectiveness. 

  

Figure 10: Histogram of Performance Evaluation Metrics 

Figure 10 shows all the scores for how well the different methods worked. Some of these scores are the F1 score, 

AUC-ROC, AUC-PR, memory, accuracy, and precision. You can examine the frequency of a specific set of 

measure numbers on each bar to understand the overall distribution of the data. 
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Figure 11: Heatmap of Performance Evaluation Metrics 

Figure 11 illustrates the success metrics for each technique. Accuracy, precision, recall, F1 score, AUC-ROC, and 

AUC-PR are all included. The varying hue levels of the image function as visual cues that facilitate the 

identification of strategies that exhibit superior or inferior performance across a multitude of criteria. The graph 

provides valuable insights into the extent to which each approach fulfils the necessary criteria, thereby aiding in 

decision-making and the development of security-enhancing techniques. 

Table 3: Comparison of Performance Evaluation Metrics for Various Healthcare Application Methods 

Method Accuracy Precision Recall F1 

Score 

AUC-

ROC 

AUC-

PR 

FPR FNR TPR 

Proposed 

Method 

0.95 0.94 0.96 0.95 0.97 0.93 0.02 0.04 0.96 

CNNs 0.92 0.91 0.93 0.92 0.95 0.90 0.07 0.06 0.94 

RNNs 0.88 0.86 0.90 0.88 0.93 0.85 0.12 0.10 0.90 

SVMs 0.91 0.89 0.92 0.91 0.94 0.88 0.06 0.07 0.93 

HMMs 0.85 0.82 0.87 0.84 0.90 0.80 0.15 0.09 0.91 

GMMs 0.87 0.85 0.88 0.87 0.92 0.84 0.10 0.11 0.89 

Wavelet 

Transform 

0.90 0.88 0.91 0.90 0.93 0.87 0.05 0.10 0.90 

MFCC 0.93 0.92 0.94 0.93 0.96 0.91 0.04 0.06 0.94 

LSTM 0.89 0.87 0.90 0.89 0.94 0.86 0.11 0.07 0.93 

PCA 0.84 0.81 0.86 0.83 0.88 0.78 0.16 0.10 0.90 

Ensemble 

Learning 

0.94 0.93 0.95 0.94 0.97 0.92 0.03 0.05 0.95 

 

Table 3 thoroughly compares performance evaluation indicators for twelve healthcare practices. Each row 

represents a technique, while the columns provide assessment measures including recall, accuracy, precision, and 

F1 score. We also display the confusion matrix, TPR, FNR, FPR, ROC curve, and Precision-Recall (PR) curve. In 

all areas, the proposed technique (first row in the table) outperforms alternatives. The accuracy rate of 0.95, 
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precision rate of 0.94, recall rate of 0.96, and F1 score of 0.95 outperform all other methods. The AUC-ROC and 

AUC-PR values of 0.97 and 0.93 indicate that the proposed method discriminates well across classes. Conversely, 

some methods perform differently across several criteria. The methods include Wavelet Transform, MFCC, CNNs, 

RNNs, SVMs, HMMs, GMMs, PCA, and Ensemble Learning. Many tactics may be beneficial in specific 

situations, but none are as effective as the proposed one. For each strategy, the confusion matrices provide the 

distribution of true positive, false positive, true negative, and false negative predictions, allowing for a thorough 

investigation of classification errors. ROC and PR curves also show the balance between accuracy, recall, true 

positive rate, and false positive rate. This clarifies categorization performance across decision thresholds. The table 

shows how well the proposed technique works in healthcare. 

5. Discussion  

The discussion examines and describes the study's test findings in detail. This study interprets the findings in light 

of current research and suggests ways to use the recommended strategy. The testing demonstrated that the 

recommended strategy worked better than other healthcare methods. The recommended strategy successfully 

sorted medical data, achieving high F1 scores in recall, accuracy, and precision. The method's high AUC-ROC 

and AUC-PR figures showed that it could distinguish across classes and maintain classification accuracy. The key 

aspects of the proposed plan operate together. We classify using CNNs and SVMs, and we extract features using 

wavelet transform and MFCC. Careful hyperparameter design and tuning allowed the recommended technique to 

evaluate healthcare data rapidly and reliably. The ablation research outlines the essential aspects and variables that 

determine the recommended method's effectiveness. The research examined each part's role in developing real-

world healthcare approaches. The study found that adopting the Internet of Things for smart audio signal 

processing might impact the healthcare industry. Using cutting-edge formulations and technologies, this proactive 

healthcare approach enhances patient outcomes and treatment.  

6.  Conclusions 

Using the smart Internet of Things, we created a novel technique to analyze healthcare voice data. The proposed 

technology organizes medical data better than existing methods, according to extensive research. We were able to 

get high scores for accuracy, precision, recall, and F1 by using advanced feature extraction techniques like Mel-

Frequency Cepstral Coefficients (MFCC) and wavelet transform along with advanced classification models such 

as CNNs and SVMs. The method's strong AUC-ROC and AUC-PR scores demonstrate its ability to classify and 

distinguish data. The ablation research illuminated several crucial parameters that will improve future therapies. 

These factors make the offered strategy promising for improving healthcare management by simplifying proactive 

monitoring and assistance. This will improve healthcare and patient outcomes.  
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