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Abstract 

 

This paper introduces and explores the concept of secondary k-Range Symmetric (RS) Neutrosophic Fuzzy Matrices 

(NFM) and establishes its properties and relationships with other symmetric and secondary symmetric NFMs. The study 

defines secondary k-RS NFMs and provides insightful numerical examples to illustrate their characteristics. The paper 

investigates the interconnections among s-k-RS, s-RS, k-RS, and RS NFMs, discuss on their mutual relations. 

Additionally, the necessary and sufficient conditions for a given NFM to qualify as a s-k-RS NFM are identified. The 

research demonstrates that k-symmetry implies k-RS, and vice versa, contributing to a comprehensive understanding 

between different types of symmetries in NFMs. Graphical representations of RS, column symmetric, and kernel 

symmetric adjacency and incidence NFMs are presented, unveiling intriguing patterns and relationships. While every 

adjacency NFM is symmetric, range symmetric, column symmetric, and kernel symmetric, the incidence matrix 

satisfies only kernel symmetric conditions. The study further establishes that every range symmetric adjacency NFM 

is a kernel symmetric adjacency NFM, though the converse does not hold in general. The existence of multiple 

generalized inverses of NFMs in Fn is explored, with additional equivalent conditions for certain g-inverses of s-κ-RS 

NFMs to retain the s-κ-RS property. We conclude by characterizing the generalized inverses belonging to specific sets 

 {1, 2},  {1, 2, 3}, and  {1, 2, 4} of s-k-RS NFMs, providing a comprehensive framework for understanding the 

structure and properties of secondary k-Range Symmetric Neutrosophic Fuzzy Matrices. This research contributes to 

the mathematical literature by introducing a novel class of NFMs and establishing their fundamental properties and 

relationships, presenting new perspectives on matrix theory in the context of neutrosophic fuzzy logic. 

 

Keywords: Neutrosophic fuzzy matrices; s- Range symmetric; Adjacency Neutrosophic fuzzy matrices; Incidence 

Neutrosophic fuzzy matrices; Moore penrose inverse. 

 

1.Introduction 

In the realm of mathematical foundations, Zadeh [1] introduced the concept of fuzzy sets (FS), which has since become 

a fundamental tool for handling imprecise and uncertain information. The properties and applications of fuzzy matrices 

have been extensively studied, with Meenakshi [2] delving into their intricacies. Jaya Shree [3] contributed to the field 

by investigating Secondary κ-KS Fuzzy Matrices, while Shyamal and Pal [4] explored the realm of interval-valued 

fuzzy matrices. The notation  {1} represents a regular fuzzy matrix, and its set of all g-inverses is denoted by P'𝒢. A 

fuzzy matrix is considered Range Symmetric (RS) and Kernel Symmetric (KS) when R( T) = R( ) and N( T) = N(

 ), respectively. It is noteworthy that, unlike for complex matrices, the equivalence of range and KS concepts does 

not hold universally for Neutrosophic Fuzzy Matrices (NFM). 

 

The study of secondary symmetric matrices, characterized by symmetric entries relative to the secondary diagonal, was 

pioneered by Ann Lee [5]. Antoni, Cantoni, and Butler Paul [6] emphasized the significance of per-symmetric matrices 
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concerning both diagonals in communication theory. Kim and Roush [7] delved into the exploration of generalized 

fuzzy matrices, contributing to the broader understanding of matrix theory. Water and Hill [8] extended the theory by 

introducing s-real and s-Hermitian matrices as a generalization of k-real and k-Hermitian matrices. Meenakshi and 

Krishanmoorthy [9] furthered this exploration by studying secondary k-Hermitian matrices, while Meenakshi and 

Krishnamoorthy, along with G. Ramesh [10], discussed s-k-EP matrices. Jaya Shree [12] characterized Secondary κ-

KS Fuzzy Matrices, and Meenakshi and Jaya Shree [13] explored k-range symmetric matrices. Shyamal and Pal [14] 

contributed to the field with a study on IV Fuzzy matrices, and Meenakshi and Kalliraja [15] focused on Regular IV 

Fuzzy matrices. 

The introduction of Atanassov's intuitionistic fuzzy sets [16] added another layer to handle partial information, focusing 

on truth membership and falsity-membership values. However, intuitionistic fuzzy sets fall short in handling ambiguous 

and contradictory data. In response, Smarandache [17] proposed the concept of neutrosophic sets, providing a 

mathematical framework for addressing inconsistent, imprecise, and indeterminate data. Anandhkumar et al. [18] 

delved into the realm of generalized symmetric neutrosophic fuzzy matrices, and their work was extended in [19] with 

a discussion on partial orderings, characterizations, and generalizations of k-idempotent neutrosophic fuzzy matrices. 

Anandan and Uthra  [44] have studied  a modified Fuzzy Topisis method using cosine similarities and ochiai 

coefficients. Anandan,Manimaran and Uthra [45]  have discussed  response optimization of machining parameters using 

vikor method under fuzzy environment.  

 

This paper introduces and extends the concept of Range Symmetric Neutrosophic Fuzzy Matrices (RS NFM). Section 

2 elaborates on the definition of a range symmetric neutrosophic fuzzy matrix, while Section 3 provides a graphical 

representation of Range Symmetric, Column Symmetric, and Kernel Symmetric adjacency and incidence NFMs. 

Section 4 delves into various generalized inverses of matrices in NFM, establishing comparable standards for g-inverses 

of a s-k RS fuzzy matrix to exhibit s-k RS properties. The paper concludes by characterizing the generalized inverses 

of a s-𝜅 RS corresponding to specific sets  {{1, 2},  {{1, 2, 3}, and  {{1, 2, 4}, contributing to the advancement 

of understanding and applications in the domain of Neutrosophic Fuzzy Matrices. 

1.1 Research gap   
While the concepts of range symmetric fuzzy matrices (RS FM) and k-KS matrices have been introduced and explored 

by Meenakshi and Jayashri, there exists a notable research gap in extending these ideas to Secondary k-RS Neutrosophic 

Fuzzy Matrices (NFM). The current literature lacks a comprehensive investigation into the properties, characterizations, 

and applications of Secondary k-RS NFMs, particularly within the context of hybrid real matrices. The existing studies 

have primarily focused on range symmetry and k-KS properties separately in the realm of fuzzy matrices.  

 

However, the hybridization of these concepts in the form of Secondary k-RS NFMs introduces a novel and unexplored 

dimension to the understanding of matrix theory. The research gap lies in the absence of a thorough exploration of the 

implications of Secondary k-RS NFMs on the structure of hybrid real matrices and their applications in the domain of 

fuzzy matrices. Furthermore, the characterization of Secondary k-RS NFMs remains underdeveloped in the current 

literature. There is a need for alternative and comprehensive characterizations of Secondary k-RS NFMs to enhance the 

theoretical foundation and practical applications of this matrix class. The lack of such characterizations hinders a deeper 

understanding of the structural properties of Secondary k-RS NFMs and their potential implications in various 

mathematical contexts.  

 

Additionally, while g-inverses associated with regular matrices have been extensively studied, their relationship with 

Secondary k-RS NFMs has not been adequately addressed. Establishing a characterization of the set of all inverses 

using Secondary k-RS NFMs would contribute significantly to bridging this gap and extending the applicability of these 

matrices in the broader field of mathematical research. In summary, the research gap identified in this study pertains to 

the exploration of Secondary k-RS NFMs, including their properties, characterizations, and applications in hybrid real 

matrices and fuzzy matrices. Addressing this gap would not only contribute to the theoretical understanding of matrix 

theory but also open avenues for innovative applications in diverse mathematical contexts. 

 

1.2 Literature Review 

 

The study of various symmetric and secondary symmetric matrices in the context of fuzzy and intuitionistic fuzzy 

matrices has been a rich field of research. Meenakshi and Jaya Shree [20] delved into the properties of k-kernel 

symmetric matrices, while Meenakshi and Krishanmoorthy [21] characterized secondary k-Hermitian matrices, 

contributing to the understanding of Hermitian properties in fuzzy matrices. In a related vein, Meenakshi and Jaya Shree 
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[22] extended their exploration to k-range symmetric matrices, further expanding the scope of symmetry concepts in 

fuzzy matrices.  

 

The work of Anandhkumar, Said Broumi have studied [23] Characterization of Fuzzy, Intuitionistic Fuzzy and 

Neutrosophic Fuzzy Matrices introduced the concept of secondary κ-Kernel Symmetric Fuzzy Matrices, adding a layer 

of complexity to the existing understanding of kernel symmetry in fuzzy matrices. Shyamal and Pal [24] contributed to 

the field with an exploration of Interval Valued Fuzzy matrices, providing insights into handling imprecise data. 

Meenakshi and Kalliraja [25] focused on Regular Interval Valued Fuzzy matrices, establishing a foundation for 

understanding regularity in the interval-valued context. Anandhkumar [26] extended the discussion to Kernel and k-

kernel Intuitionistic Fuzzy matrices, providing insights into the intersection of kernel properties and intuitionistic fuzzy 

logic. Jaya Shree [27] discussed Secondary κ-Range Symmetric Fuzzy Matrices, contributing to the understanding of 

range symmetry in the context of secondary fuzzy matrices. Anandhkumar et al. [28] studied Generalized Symmetric 

Neutrosophic Fuzzy Matrices, broadening the scope of symmetry concepts to the neutrosophic fuzzy domain. 

 

Kaliraja and Bhavani [29] explored Interval Valued Secondary 𝜅-Range Symmetric Fuzzy Matrices, extending the 

understanding of range symmetry to the interval-valued setting. Baskett and Katz [30] Theorems on products of EPr 

matrices. The notion of kernel symmetric matrices for fuzzy matrices was addressed by Meenakshi and Krishnamoorthy 

[31]. Meenakshi, Krishnamoorthy, and Ramesh [32] delved into the study of s-k-EP matrices, contributing to the 

exploration of EP matrices as a generalization of k-hermitian matrices. Meenakshi and Krishnamoorthy [33] introduced 

s-k hermitian matrices as a generalization of secondary hermitian and hermitian matrices. The extension of the concept 

into s-k kernel symmetric Intuitionistic Fuzzy matrices was explored, establishing equivalent conditions for various g-

inverses. Meenakshi and Krishnamoorthy [34] have discussed on κ-EP matrices. Shyamal and Pal [35] have studied 

Interval valued Fuzzy matrices. 

 

The study of k-symmetric matrices was initiated by Ann Lec [36], with Elumalai and Rajesh kannan [37] expanding 

the understanding to k-Symmetric Circulant Matrices. Elumalai and Arthi [38] contributed to the exploration of 

properties of k-CentroSymmetric and k-Skew CentroSymmetric Matrices. Gunasekaran and Mohana [39] studied k-

symmetric Double stochastic, s-symmetric Double stochastic, s-k-symmetric Double stochastic Matrices, broadening 

the applicability of symmetry concepts to double stochastic matrices. Anandhkumar et.al [40] has studied On various 

Inverse of Neutrosophic Fuzzy Matrices. Anandhkumar et.al [41] has discussed Reverse Sharp and Left-T Right-T 

Partial Ordering on Neutrosophic Fuzzy Matrices. Anandhkumar et.al [42] has focused on Reverse Tilde (T) and Minus 

Partial Ordering on Intuitionistic Fuzzy Matrices.Anandhkumar et.al [43] Interval Valued Secondary k-Range 

Symmetric Neutrosophic Fuzzy Matrices. Anandhkumar et.al [46] have discussed, Pseudo Similarity of Neutrosophic 

Fuzzy matrices. Anandhkumar et.al  [47] has applied secondary k-column symmetric Neutrosophic Fuzzy Matrices. 

Bobin et.al [48] has studied Decision Making using cubic Hypersoft Topsis Method. 

 

 

In summary, the literature reviewed presents a comprehensive exploration of various symmetric and secondary 

symmetric matrices in the context of fuzzy and intuitionistic fuzzy matrices. The studies cover a wide range of 

properties, characterizations, and applications, contributing to the advancement of matrix theory in the domain of 

imprecise and uncertain information. The research landscape is rich and varied, providing a solid foundation for further 

explorations and advancements in this interdisciplinary field. 

Table:1 Extension of Neutrosophic Fuzzy Matrices based on previous works 

References Extension of Neutrosophic Fuzzy Matrices from Fuzzy Matrices Year 

[20] On k-kernel symmetric matrices 2009 

[22]  On k -range symmetric matrices 2009 

[12]  Secondary k-Kernel Symmetric Fuzzy Matrices 2014 

[27] Secondary k-range symmetric fuzzy matrices 2018 

[29] Interval Valued Secondary -Range Symmetric Fuzzy Matrices 2022 

Proposed Secondary k-Range Symmetric Neutrosophic Fuzzy Matrices  

 

 

 

 

 
k -range symmetric matrices 

Secondary k-range symmetric 

fuzzy matrices 
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Figure 1: Flowchart of research Gap 

 

From Table 1 and the process flow, it is evident that previous studies have focused on k-Kernel, k-range, Secondary k-

Kernel, and Secondary k-range using fuzzy matrices. However, there is a noticeable research gap in these studies within 

a Neutrosophic environment. Based on this observation, we have addressed this gap by establishing results for K-range 

and Secondary k-range in neutrosophic fuzzy matrices. 

 

1.3 Novelties  

 We have introduced the concept of Secondary k-RS in Neutrosophic Fuzzy Matrices, playing a pivotal role in 

the hybrid fuzzy structure. Its application in NFM has been thoroughly explored, and detailed results have been studied. 

 We present equivalent characterizations of Secondary k-RS Neutrosophic Fuzzy Matrices, shedding light on 

their structural properties. Additionally, various examples of Secondary k-RS Neutrosophic Fuzzy Matrices are 

provided to illustrate the concept. 

 The study delves into various g-inverses associated with regular matrices, establishing a characterization of the 

set of all inverses through the utilization of Secondary s-k-RS Neutrosophic Matrices. 

1.4 Notations 

 T   = Transpose of the matrix  . 

 +   = Moore-Penrose inverse of  . 

R  = Row space of  . 

N  = Null space of  . 

RS = Range symmetric. 

KS = Kernel symmetric.  

Fn = Square Neutrosophic Fuzzy Matrices. 

2. Range Symmetric Neutrosophic Fuzzy Matrices   

Definition: 2.1 Let  be a NFM, if R[ ] = R[
T ] then   is called as RS. 

Example:2.1 Consider a NFM, 

0.3,0.5,0.4 0,0,1 0.7,0.2,0.5

0,0,1 0,0,1 0,0,1 ,

0.7,0.2,0.5 0,0,1 0.3,0.2,0.4



      
 

      
 
         

The following matrices are not RS 

 
1,1,0 1,1,0 0,0,1

0,0,1 1,1,0 1,1,0 ,

0,0,1 0,0,1 1,1,0



      
 

      
 
       

1,1,0 0,0,1 0,0,1

1,1,0 1,1,0 0,0,1 ,

0,0,1 1,1,0 1,1,0

T

      
 

      
 
         

   1,1,0 1,1,0 0,0,1 ( ) , 1,1,0 1,1,0 0,0,1 ( )TR R              

   0,0,1 1,1,0 1,1,0 ( ) , 0,0,1 1,1,0 1,1,0 ( )
T TR R              

Interval Valued Secondary -

Range Symmetric Fuzzy 

Matrices 

Secondary k-Range Symmetric 

Neutrosophic Fuzzy Matrices 
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   0,0,1 0,0,1 1,1,0 ( ) , 0,0,1 0,0,1 1,1,0 ( )TR R              
 

R( ) ( )TR 
 

Definition 2.2: A NFM    Fn is s-symmetric NFM    = V TV. 

Example:2.2 Consider a NFM 

0.4,0.3,0.2 0,0,1 0.5,0.4,0.3

0,0,1 0,0,1 0,0,1 ,

0.5,0.4,0.3 0,0,1 0.3,0.2,0.4



      
 

      
 
         

                         

0,0,0 0,0,0 1,1,0

0,0,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0

V

      
 

      
 
       

 

Definition 2.3: A NFM  Fn is s-RS NFM  R( ) = R(V TV). 

Example:2.3 Consider a NFM 

0.7,0.4,0.5 0,0,1 0.8,0.2,0.1

0,0,1 0,0,1 0,0,1 ,

0.8,0.2,0.1 0,0,1 0.5,0.7,0.3



      
 

      
 
         

                         

0,0,0 0,0,0 1,1,0

0,0,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0

V

      
 

      
 
         

Definition 2.4: A NFM  Fn is s-k-RS NFM  R( ) = R(KV TVK). 

Example:2.4 Consider a NFM 
0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

    
  

    
 ,    

         K
1,1,0 0,0,0

,
0,0,0 1,1,0

    
  

    

0,0,0 1,1,0
,

1,1,0 0,0,0
V

    
  

      

Definition 2.5: A NFM  is KS NFM  N ( A) = N ( AT ) . 

Definition 2.6: A NFM   is column symmetric NFM   C ( A) = C( AT ) . 

Preliminary:2.1 Let the function is defined by v(y) = (yk[1], yk[2], yk[3],…, yk[n])∈ Fn×1 for y = (y1, y2,...,yn) ∈ F[1×n], where 

V is permutation matrix its satisfied the following conditions, VVT =  VTV = In then VT = V and R( ) = R(V ), R(

 ) = R(K ). 

Remark 2.1: Every s-k-symmetric NFM is s-k-RS NFM since   = KV TVK if   is s-k-symmetric NFM. Thus, R( ) = 

R(KV TVK), signifying that   is a NFM with s-k-RS. 

 
Example 2.5. Consider a NFM,

 

V
0,0,0 1,1,0

,
1,1,0 0,0,0

    
  

    
  


0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

    
  

    
 , K

1,1,0 0,0,0
,

0,0,0 1,1,0

    
  

      
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1,1,0 0,0,0 0,0,0 1,1,0 0.7,0.3,0.4 0.5,0.3,0.4

0,0,0 1,1,0 1,1,0 0,0,0 0.5,0.3,0.4 0.7,0.3,0.5

TKV VK
                

      
                

 

0,0,0 1,1,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0 1,1,0

          
   
          

0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

TKV VK 
    

  
      

 is symmetric, s-κ-symmetric which implies s- k-RS NFM. 

Example 2.6. Consider a NFM

  0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 , 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

K V

              
   

             
   
                 

 

0,0,0 0,0,0 1,1,0

0.5,0.3,0.4 1,1,0 0,0,0

0.4,0.2,0.6 0.5,0.3,0.4 0,0,0



      
 

      
 
       

 

0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

KV

              
   

            
   
                 

 0,1,0 0,1,0 0,1,0

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

KV

      
 

      
 
       

 

0,0,0 0,0,0 1,1,0 0,0,0 1,1,0 0,0,0

0,0,0 1,1,0 0,0,0 1,1,0 0,0,0 0,0,0

1,1,0 0,0,0 0,0,0 0,0,0 0,0,0 1,1,0

VK

              
   

            
   
                 

 

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

0,1,0 1,1,0 0,1,0

VK

      
 

      
 
         

TVK 

0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,0.7,0 0.5,0.7,0 0,0.7,0

0,0,0 0,0,0 1,0,0

      
 

     
 
       

 

0,1,0 0,1,0 0,1,0 0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,1,0 0,1,0 1,1,0 0,0.7,0 0.5,0.7,0 0,0.7,0

1,1,0 0,1,0 0,1,0 0,0,0 0,0,0 1,0,0

TKV VK

              
   

            
   
                 
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0,0,0 0,0.2,0 0,0,0

0,0,0 0,0,0 1,0,0

0.5,0,0 0.4,0,0 0,0,0

TKV VK 

      
 

       
 
         

TKV VK    is not s- κ –symmetric iff not s- κ-RS. 

3. Graphical Representation of Range symmetric, Column symmetric and kernel symmetric Adjacency NFM.  

Definition 3.1. Adjacency NFM  
  An adjacency Neutrosophic Fuzzy Matrix is a square matrix that serves as a representation for a finite graph. 

The matrix's elements convey information regarding whether pairs of vertices within the graph are connected or not. In 

the specific scenario of a finite simple graph, the adjacency matrix can be described as a binary matrix, often denoted 

as a (1,1,0) and (0,0,1) -matrix, where the diagonal elements are uniformly set to (0,0,1). 

 G(V, E) denote a simple graph with n vertices. The adjacency matrix A = [aij] is a symmetric matrix defined by

i j

ij

(1,1,0) when v isadjacent to v
[a ]

(0,0,1) otherwise
A


 


, denoted by A(G) or AG 

Example: 3.1 Consider an adjacency NFM and a corresponding graph 

a (0,0,1) (1,1,0) (0,0,1) (1,1,0)

A b (1,1,0) (0,0,1) (1,1,0) (0,0,1)

c (0,0,1) (1,1,0) (0,0,1) (1,1,0)

d (1,1,0) (0,0,1) (1,1,0) (0,0,1)

 
 
 
 
 
   

 

                                                                        

                                                                     Figure 2: Graph of adjacency 

 

Definition 3.2. Incidence NFM 

G(V, E) represent a simple graph with n vertices. Let V = {V1, V2, …, Vn} and E = {e1, e2, ..., em}. Then, the incidence 

NFM I = [mij] is a n m  matrix defined by 

i j

ij

(1,1,0) when v isincident toe
[ ]

(0,0,1) otherwise
I m


 


, denoted by A(G) or AG. 

Example:3.2  Consider an incidence NFM and a corresponding graph 

The incidence NFM is  

a (1,1,0) (0,0,1) (0,0,1) (1,1,0) (1,1,0) 

I b (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) 

c (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) 

d (0,0,1) (1,1,0) (1,1,0) (0,0,1) (1,1,0) 

 
 
 
 
 
   

 

 

 

 

 

 

 

 

 

 

 

a b 

c d 
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Corresponding graph 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Graph of Incidency 

 

3.1 Range symmetric, Column symmetric and kernel symmetric Adjacency NFM

 

Graph A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graph of range symmetric Adjacency 

 

Adjacency NFM  

(0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0

A 

,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

The given Graph is range symmetric NFM R(A) = R(AT)   

 

   

G H I 

D E F 

A B C 

a 
b 

c 
d 

 
e1 

e2 

e3 

e4 

e5 
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Graph B 
 

              

 

 

      

 

 

 

 

 

 

 

 

 

Figure 4: Graph of column symmetric Adjacency 

 

Adjacency NFM 

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

(0,0,1) (0

B 

,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0)

(1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (0,0,1)

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

The given Graph is column symmetric NFM C(B) = C(BT)   

 

Graph C 

 

 

 

              

 

 

      

 

 

 

 

 

 

Figure 5: Graph of kernel symmetric Adjacency Adjacency Matrix  

C E D 

G J F 

A H B 

C F D 

H E G 

A J B 
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(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0

C 

,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0)

(0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

 
 
 
 
 
 
 
 
 
 
 
 
 
   

The given Graph is kernel symmetric Fuzzy Matrix N(C) = N(CT) 

3.2 Incidence matrix   

(1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (1,1,0) (1,1,0) (0,0,1)

(1,1,0) (1,1,0) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0)

a     

b     
A

c     

d     

 
 
 
 
 
 

 

 
Figure 6: Graph of Incidency 

 

The given Graph is kernel symmetric Fuzzy Matrix but not Range and Column symmetric. 

Note:3.1 Every Adjacency NFM is symmetric, range symmetric, column symmetric and kernel symmetric but 

Incidence matrix satisfies only kernel symmetric conditions. 

Note:3.2 Every range symmetric NFM is kernel symmetric NFM but kernel symmetric NFM need not be range 

symmetric NFM 

 

4. Theorems and Results 

Theorem 4.1: The subsequent conditions are equivalent for nF  

(i) R( ) = R( T). 

(ii)  T =  H= K  for several NFM H, K and  ( ) = r. 

Theorem 4.2 . The subsequent conditions are equivalent for nF  

(i) R( ) = R(KV TVK) 

(ii) R (KV ) = R((KV )T) 

(iii) R( KV) = R(( KV)T) 

(iv) R(V ) = R(K(V )TK) 

 

a 

c 

b 

d 

e1 e2 
e3 

e5 

e4 
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(v) R( K)= R(V( K)TV) 

(vi) R( T)= R(KV ( )VK)  

(vii) R( ) = R( TVK) 

(viii) R(PT) = R(PKV) 

(ix)   = VK TVKH1 for H1
Fn 

(x)   = H1KV TVK for H 1
Fn 

(xi)  T = KV VKH for HFn 

(xii)  T = HKV KV for HFn 

Proof: (i) ⇔ (ii) ⇔  (iv ) 

   is s- κ- RS 

 R( ) = R(KV TVK) 

 R(KV ) = R((KV )T                                            [ By Definition:2.1]   

 KV  is RS 

 VP is κ- RS           

Hence, (i) ⇔ (ii) ⇔ (iv) hold. 

(i) ⇔ (iii) ⇔ (v) 

  is s- κ - RS  R( ) = R(KV TVK)                                           [By Definition 2.4] 

 R(KV ) = R((KV )T)                                                            [ By Definition:2.5]   

 R(VK (KV )(VK)T =  R ((VK)  TVK (VK)T)                   

 R( KV) = R(( KV)T) 

  KV is RS 

  K is s- RS 

Hence,  (i) ⇔ (iii) ⇔ (v) hold.   

 (ii)   (vii) 

KV  is RS  R (KV ) = R((KV )T) 

 R( ) = R((KV )T)                                      [By Preliminary 2.1 ]   

 R( ) = R( TVK) 

Hence, (ii) ⇔ (vii) hold. 

(iii) iff (viii): 

 VK is RS R( VK) = R(( VK)T) 

 R ( VK) = R( T)                                    [ By Preliminary 2.1 ]   

Hence,(iii) ⇔ (viii) hold. 

(i) iff (vi) 

  is s- κ- RS  R( ) = R(KV TVK) 

 R(KV ) = R ((KV )T)                                                                         [ By Preliminary 2.1 ]   

 (KV )T is RS 

   TVK is RS 

  
T is s- κ - RS 

Hence, (i) ⇔ (vi) hold. 

(i) iff  (xi) iff  (x) 

  is s- κ- RS   R( ) =  R(KV TVK) 

 R ( T) = R(KV VK) 
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   T = KV VKH             [By Theorem 2.1] 

   = H1KV TVK for H1 Fn 

Hence, (i) ⇔ (xi) ⇔ (x) hold. 

(ii) ⇔  (xii) ⇔ (ix) 

KVP is RS   VP is κ- RS 

 R(V ) = R(K(V )TK) 

  R( ) = R( TVK)                                           [ By Preliminary 2.1 ]   

 R ( T) = R(KV )   

   T = HKV  for H  Fn                                                                                         [By Theorem 2.1] 

   T = HKV KV 

   = VK TVKH1 for H 1   Fn 

Hence, (ii) ⇔ (xii) ⇔ (ix) hold. 

Corollary 4.1: The subsequent conditions are equivalent for nF  

(i) R( ) = R(V TV)  

(ii) R(V ) = R(VP)T  

(iii) R( V) = R( V)T  

(iv)   is s- RS 

(v) R( T) = R(V V) 

(vi) R( ) = R( TV)  

(vii) R( T) = R( V) 

(viii) R(KV ) = R((V )T) 

(ix)  = V TVH1 for H1   Fn 

(x)  = H1V TV for H1   Fn 

(xi)  T = V VH  for H   Fn 

(xii)  T = HV V for H   F 

Theorem 4.3: For nF then any pair of the following statements indicate the other one 

(i) R( ) = R(K TK) 

(ii) R( ) = R(VK TKV)  

(iii) R( T) = R((VK )T) 

Proof: (i) and (ii) iff (iii) 

  is s- κ – RS R( ) = R( TVK)                                               [By Theorem 2.2] 

R(K K) = R(K TK)                                        

Hence (i) and (ii)   R( T) = R((V K)T) 

Hence, (iii) hold. 

(i) and (iii) iff  (ii) 

  is κ- RS R( ) = R (K TK) 

R(K K) = R( T)             

Hence (i) and (iii)   R(K K)= R((V K)T ) 
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R( ) = R( TVK) 

  R( ) = R((KV )T) 

   is s- κ RS                                    [By Theorem 2.2] 

Therefore,(ii) hold.  

(ii) and (iii)  (i) 

  is s- κ – RS   R( )= R( TVK) 

R(K K) = R (K TV)                                 [ By Definition:4.5]   

Hence (ii) and (iii)   R (K K) = R( T) 

R( ) = R(K TK)           

   is κ – RS 

Therefore, (i) hold. Hence the Theorem 

5. s- κ-Range Symmetric Regular NFM  

We show the existence of several generalized inverses of NFM in Fn. and determine the conditions for different g-

inverses of a s-k-RS NFM to be s-k RS NFM. Generalized inverses belonging to the sets   {1, 2},  {1, 2, 3} and   

{1, 2, 4} of s-k-RS NFM are  characterized.     

Theorem 5.1: Let nF , nZ F  {1,2} and  Z, Z , are s- κ-RS NFM. Then   is s- κ – RS NFM ⇔ Z is s- κ – 

RS NFM.   

Proof: R(KV ) = R(KV Z ) ⊆ R(Z )          [since   =  Z ]   

= R(ZVV ) = R(ZVKKV ) ⊆ R(KV )  

       Hence, R(KV ) = R(Z )  

               = R(KV(Z )TVK)               [Z  is s- κ-RS NFM]  

               = R( T ZT VK)   

               = R(ZT VK)  

               = R((KVZ)T)   

   R ((KV )T)  = R ( T VK)  

               = R(ZT T VK)    

               = R((KV Z)T)    

               = R(KV Z)                   [ V  is s- κ -RS]  

               = R(KVZ) 

 KVZ is RS ⇔ R(KV ) = R((KV )T)   

                         ⇔ R((KVZ)T) = R(KVZ) 

                         ⇔ KVZ is RS 

                         ⇔ Z is s- κ- RS. 

Theorem 5.2: Let nF , Z ∈  {1,2,3}, R(KV ) = R((KVZ)T).Then   is s-κ-RS NFM ⇔ Z is s- κ - RS NFM. 

Proof: Since Z ∈  {1,2,3}, Hence  Z   =  ,Z Z =Z, ( Z)T= Z 

             R ((KV )T) = R(ZT  T VK)                     [By using  Z   =  ] 

                       = R(KV( Z)T) 

                          = R(( Z)T)                                  

                       = R( Z)                                                                            [( Z)T= Z] 

                       = R(Z)                                       [By using Z = Z Z] 

                          = R(KVZ)                                      

KV  is RS NFM ⇔ R(KV ) = R((KV )T) 

                             ⇔ R((KVZ)T) = R(KVZ) 

                             ⇔ KVZ is RS 

                             ⇔ Z is s- κ - RS. 

Theorem 5.3: Let nF , Z ∈  {1,2,4}, R((KVP)T) = R(KVZ) . Then   is s- κ-RS NFM ⇔ Z is s- κ- RS NFM. 

Proof: Since Z ∈  {1, 2, 4}, we have  Z   =  , Z Z =Z, (Z )T=Z  
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  R(KV) = R( )                                  

        = R(Z )                   [Z Z = Z,  Z  =  ] = N((Z )T) [(Z )T = Z ] 

       = R(  TZT)  

        = R (ZT)  

         = R((KVZ)T).           

KV  is RS NFM ⇔ R(KV ) = R((KV )T 

⇔ R((KVZ) T) = R(KVZ) 

⇔ KVZ is RS NFM 

⇔ Z is s- κ – RS NFM.      

In particular for K = I, the above Theorems reduces to equivalent conditions for various g-inverses of a s-kernel 

symmetric NFM to be secondary kernel symmetric NFM. 

Corollary 5.1: Let   belongs to Fn, Z  belongs  (1, 2) and  Z, Z  are s- RS NFM. Then P is s- RS NFM ⇔ Z is 

s- RS NFM. 

Corollary 5.2: Let   belongs to Fn , Z belongs to  (1, 2, 3), R(KV ) = R((VX)T) . Then   is s- RS NFM ⇔ Z is 

s- RS NFM. 

Corollary 5.3: Let   belongs to  Fn, Z belongs to   (1, 2, 4) ,R((V )T) = R(VZ) . Then   is s- RS NFM ⇔ Z is s- 

RS NFM. 

5. Conclusion 

 

In conclusion, our study has successfully established significant connections and relationships among various matrix 

properties, such as k-symmetry, k-RS, s-RS, and RS NFM. We have provided a comprehensive characterization of the 

generalized inverses for specific sets, namely {1, 2}, {1, 2, 3}, and {1, 2, 4}, within the context of s-RS NFM. Our 

findings also present the implications of κ-symmetry, establishing its direct correlation with κ-RS while emphasizing 

the universality of the reverse relationship. Additionally, we present a graphical representation of Range symmetric, 

Column symmetric, and kernel symmetric Adjacency and Incidence NFM. Notably, every Adjacency NFM exhibits 

symmetry, range symmetry, column symmetry, and kernel symmetry, while the Incidence matrix adheres strictly to 

kernel symmetric conditions. Intriguingly, our investigation reveals that every range symmetric Adjacency NFM is a 

kernel symmetric Adjacency NFM, although the converse is not universally true. These results contribute valuable 

insights to the field, advancing our understanding of the intricate relationships within matrix properties and paving the 

way for further exploration in this domain. In future, we will work on related properties of secondary k-range symmetric 

neutrosophic fuzzy matrices.  
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