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Abstract 

Monitoring air pressure systems in heavy-duty vehicles such as Scania trucks is a key driver for operational safety and 

efficiency in the automotive industry. However, the complex interaction of sensors and data sources makes it difficult 

to quickly detect potential system failures. This problem is solved in our paper where we present a special-purpose 

data fusion framework for real-time monitoring of Scania trucks’ air pressure systems. To achieve this, PCA is used 

to reduce the size of the dataset followed by a voting classifier which combines diverse models such as Decision Trees, 

Random Forests, Naive Bayes, and Linear Regression using ensemble learning. In particular, our comparative analysis 

shows that the Voting Classifier outperforms other ML methods in terms of prediction accuracy. These findings suggest 

that our fusion framework can be utilized for the early detection of air pressure anomalies in heavy-duty vehicles 

enhancing their safety record. 

Keywords: Data Fusion; Real-Time Monitoring; Air Pressure System Analysis; Scania Truck Diagnostics Fault 

Detection ;Vehicle Health Monitoring. 

1. Introduction 

The modern automotive industry is continuously pursuing improvements in vehicle safety, reliability, and 

performance. The air pressure systems for heavy-duty vehicles like the Scania trucks are among the important 

components that make sure they work safely [1-3]. They help in maintaining tire pressure which is a fundamental part 

of the roadworthiness and stability of vehicles. Nevertheless, it still remains a big challenge to have these systems 

working optimally due to the many sensors involved, different sources of data, and operational situations [4-6]. For 

this reason, there has been an extensive search for more effective ways to monitor and detect failures as they occur 

immediately within academic circles as well as industry players. 

Traditionally, monitoring of vehicles' air pressure systems had relied on the use of only one sensor measurement 

leading to low accuracy and reliability in fault detection [7]. Recent developments have led to the adoption of data 

fusion techniques that facilitate the integration and analysis of different sensor information thus providing a more 

comprehensive picture of how a given system behaves at any given time. In this regard, the effort now shifts towards 

building an efficient data fusion framework customized specifically for use on Scania trucks with an aim of allowing 

continuous monitoring in real-time so that any emerging problems can be detected early enough before they become 

major challenges concerning their air pressure systems [8]. 

The significance of this research lies in its potential to revolutionize the approach to air pressure system monitoring 

in Scania trucks. By harnessing advanced data fusion techniques, the proposed framework strives to overcome the 

limitations of conventional monitoring methods, offering a more robust and proactive solution. Additionally, the 

integration of real-time monitoring capabilities promises to enhance not only the safety but also the operational 

efficiency of these heavy-duty vehicles. This research aligns with the industry's aspirations to adopt proactive 

maintenance strategies, ultimately minimizing downtime and ensuring safer transport operations [9-11]. 
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As the automotive landscape evolves, the proposed efficient data fusion framework signifies a crucial step toward 

predictive maintenance and proactive fault detection in Scania trucks. This research contributes to the broader field of 

vehicle health monitoring and paves the way for future innovations in real-time monitoring systems.  

2. Related Works 

This section begins by exploring a diverse array of scholarly works and industry literature encompassing various 

aspects of vehicle monitoring, data fusion techniques, and fault detection mechanisms. In the realm of heavy-duty 

vehicle technologies, Alam et al. [10] delved into the domain of fuel-efficient platooning systems, emphasizing their 

potential impact on enhancing vehicle efficiency. Their work focused on distributed control mechanisms tailored for 

heavy-duty vehicle platooning, laying the groundwork for advancements in collaborative driving systems. 

Furthermore, Alam and colleagues [12] extended their research trajectory in fuel-efficient distributed control for 

platooning, contributing further insights into the realm of cooperative methods to bolster safety and efficiency in 

freight transportation.  Hou et al. [11] conducted a systematic review pertaining to fault detection and diagnosis within 

air brake systems. Their comprehensive analysis, published in the Journal of Manufacturing Systems, elucidated 

various fault detection strategies, providing a valuable resource for understanding and addressing air brake system 

failures. In the domain of anomaly detection frameworks, Huang et al. [13] introduced the Energy-Efficient and 

Trustworthy Unsupervised Anomaly Detection Framework (EATU), catering to the Industrial Internet of Things 

(IIoT). Their work focused on enhancing anomaly detection reliability within sensor networks, presenting a promising 

avenue for robust system monitoring. 

Wolf et al. [14] delved into behavior-based control systems for off-road navigation, particularly in the context of 

Unimog vehicles. Their study showcased the application of control mechanisms to ensure safe and reliable navigation 

in challenging terrains, shedding light on specialized navigation techniques for commercial vehicles.  Theissler et al. 

[15] explored the realm of predictive maintenance in the automotive industry, emphasizing the role of machine 

learning (ML). Their work provided valuable insights into predictive maintenance applications, addressing challenges 

and presenting potential use cases within the automotive sector. Alam et al. [16] revisited the concept of heavy-duty 

vehicle platooning, emphasizing cooperative methods for augmenting safety and efficiency in freight transportation. 

Their study underscored the significance of collaborative driving systems in the pursuit of sustainable freight 

transportation. Dias [17] and Dias with Peltonen [18] investigated the integration of ML Operations (MLOps) with 

IoT edge devices, presenting open-sourced integration methods. Their research explored the convergence of ML and 

edge computing, offering insights into potential applications within IoT frameworks. Nacke and Hirschfeld [19] 

focused on evaluating the implementation areas of Real-Time Location Systems (RTLS) in production at Scania CV 

AB Oskarshamn. Their study provided a detailed assessment of RTLS integration in production settings, highlighting 

its potential benefits and challenges.  Scapinakis and Garrison [20] examined communication and positioning systems 

within the motor carrier industry, emphasizing the role of technology in enhancing industry-wide operations. Their 

study provided a historical perspective on communication and positioning systems in motor carrier operations.  Rettore 

[21] delved into the fusion of vehicular data space, emphasizing the potential impact on smart mobility. His work 

explored novel approaches to data fusion within vehicular domains, paving the way for advancements in smart 

mobility solutions. Lima [22] and Lima [23] investigated optimization-based motion planning and predictive control 

mechanisms for autonomous driving, particularly in heavy-duty construction trucks. Their studies provided 

experimental evaluations of control systems tailored for autonomous driving applications, contributing insights into 

the realm of autonomous heavy-duty vehicles. 

3. Methodology 

This section encompasses a detailed exposition of the structured methodology developed to integrate diverse sensor 

data and employ data fusion strategies tailored explicitly for the complexities inherent in the air pressure systems of 

heavy-duty vehicles. The developed framework strategically applies Principal Component Analysis (PCA) to the 

dataset pertaining to one specific air system within the Scania trucks. This process involves a systematic reduction of 

the dataset's dimensionality by identifying and extracting the principal components that encapsulate the maximum 

variance within the data. 

The introduction of a variance-covariance matrix 𝐂 facilitates Principal Component Analysis (PCA) by enabling the 

comprehensive analysis of variance and covariance relationships within the dataset. 
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𝑚=1
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The division of the variance-covariance matrix into two distinct terms elucidates the contribution of the mean 

distribution's variance-covariance and the 𝑓𝑙 weighted average of intra-group variance-covariance, offering a 

comprehensive insight into the distinct sources shaping the overall matrix structure. 

 

𝐶 = 𝐶JAM + 𝐶intra
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𝐿

𝑙=1
}
  (2) 

The introduction of an 𝑓×𝑀 matrix encompassing the entirety of the dataset allows for a comprehensive representation 

of the dataset's features across 𝑓 dimensions and 𝑀 instances or samples. 

𝑄 = {Δ𝑞1⋯Δ𝑞𝑀},          (3) 

The matrix 𝐀 can be derived through a matrix product operation, potentially involving the multiplication of matrices 

or vectors, elucidating a transformation or relationship within the dataset representation. 

𝐶 =
1

𝑀
𝑄𝑄𝑇 ,           (4) 

The solution involves resolving the standard eigenvalue problem while maintaining the orthonormal condition, 

where 𝐐𝑇 represents the transpose of 𝐐, ensuring an orthogonal relationship and providing fundamental insights into 

the dataset's intrinsic characteristics. 

𝐶𝑉 = 𝑉𝜆,           (5) 

Upon solving, the outcomes comprise 𝐕, the eigenvector matrix, 𝛌, the eigenvalue matrix, and 𝐈, the unit matrix, 

offering essential components that signify the dataset's principal directions, corresponding variances, and an identity 

matrix, respectively. 

𝑉𝑉𝑇 = 𝑉𝑇𝑉 = 𝐼,          (6) 

The comprehensive linear transformation of 𝐐 utilizing 𝐕 results in a projection matrix 𝚺=(𝛔1⋯𝛔𝑓) that facilitates 

the projection of data onto the Principal Components (PCs), delineating their respective contributions to the dataset's 

variance. 

𝜎𝑚 = 𝑉𝑇Δ𝑞𝑚,           (7) 

𝛴 = 𝑉𝑇𝑄.           (8) 

Performing Principal Component Analysis (PCA) via the singular value decomposition (SVD) of 𝐐 (an 𝑓×𝑀 matrix) 

directly yields a decomposition into three matrices, offering an alternative method to extract the fundamental 

components of the dataset with inherent relationships. 

𝑄 = √𝑀𝑉𝜆1 2⁄  𝑈𝑇 ,          (9) 

𝑈𝑇 =
1

√𝑀
𝜆−1/2𝛴 =

1

√𝑀
𝜆−1/2 𝑉𝑇𝑄.        (10) 

In this context, 𝛌1/2 represents an 𝑓×𝑀 matrix characterized by zero non-diagonal elements, simplifying the derivation 

of a specific condition within the analysis. 

𝑈𝑇𝑈 = 𝐼.           (11) 

To gauge the applicability of PCA to a given dataset, the assessment involves examining the contribution of 

Principal Components (PCs) to the total variance, quantifying their relevance and impact within the dataset through 

a defined calculation. 
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𝑓
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.          (12) 

By implementing PCA on the air system data, our framework aims to condense the information while retaining 

essential patterns and variations present in the dataset. This reduction in dimensionality not only aids in simplifying 

the dataset but also facilitates a more efficient analysis of the system's behavior and characteristics. The application 

of PCA to this particular air system data serves as a crucial preprocessing step within our framework, enabling a more 

streamlined and focused analysis of the system's performance and potential anomalies. 

 

 

 

In our approach, we leverage ensemble learning techniques via a Voting Classifier to amalgamate the predictive power 

of diverse base models, including Decision Trees, Random Forests, Naive Bayes, and Linear Regression. The 

fundamental principle behind ensemble learning involves combining multiple individual models to generate a robust 

and more accurate prediction collectively. Within the Voting Classifier framework, each base model is trained 

independently on the dataset, and during the prediction phase, their outputs are aggregated based on various strategies 

such as majority voting (hard voting) or weighted averaging (soft voting). This amalgamation of predictions from 

diverse models enhances the overall predictive performance by leveraging the strengths and mitigating the weaknesses 

of individual models. The steps involved in applying the Voting Classifier encompass:   

• Base Model Training: Each individual model—Decision Trees, Random Forests, Naive Bayes, and Linear 

Regression—is trained on the dataset separately, capturing distinct patterns and relationships within the data. 

• Voting Mechanism: During the aggregation phase, the Voting Classifier combines the predictions from these 

base models using a predetermined strategy. In hard voting, the final prediction is determined by the majority 

Figure 1: visualization of the concept of voting-based ensemble 

learning classifier. 
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vote among the individual models. In contrast, soft voting incorporates weighted averaging of probabilities 

assigned by each model, providing a more nuanced prediction. 

• Ensemble Prediction: The aggregated predictions derived from the base models via the Voting Classifier are 

considered the ensemble prediction, which often demonstrates superior performance compared to any single 

base model. 

 

Upon employing this ensemble approach, our framework harnesses the diverse strengths of each model type—ranging 

from tree-based approaches to regression and probabilistic methods—culminating in a more robust and accurate 

predictive system capable of handling varying complexities and nuances present within the dataset. 

4. Results and Discussion 

This section encapsulates the culmination of rigorous experimentation, where the framework's efficacy and 

performance were rigorously evaluated under various operational conditions and stress scenarios. The results 

presented herein encapsulate a detailed account of the system's responsiveness, accuracy in fault detection, and ability 

to provide timely insights into potential anomalies within the air pressure systems. 

In Figure 2, an insightful exploration of the Principal Component Analysis (PCA) unfolds, showcasing two distinctive 

yet interconnected aspects of its application. The left part of the figure meticulously portrays the relationship between 

the number of principal components utilized and the corresponding explained variance. This graphical representation 

provides a comprehensive view of how the inclusion of additional components influences the cumulative variance 

captured within the dataset. Simultaneously, the right segment of Figure 2 meticulously illustrates the impact of 

varying component numbers on classification accuracy. This graphical depiction offers a nuanced understanding of 

the relationship between the dimensionality reduction achieved through PCA and its consequent effect on the accuracy 

of classification algorithms. The juxtaposition of these visualizations not only delineates the trade-offs inherent in 

dimensionality reduction but also underscores the critical interplay between PCA-driven variance retention and its 

ultimate influence on the accuracy of classification models employed within the scope of this study. 

Figure 3 unveils a detailed dendrogram meticulously constructed to represent the intricate relationships and 

hierarchical clustering of feature correlations within the dataset. This dendrogram encapsulates a comprehensive visual 

depiction of the interplay and clustering patterns among the various features under consideration. Through hierarchical 

clustering, the dendrogram visually dissects the similarities and dissimilarities between features, elucidating clusters 

of correlated variables and their hierarchical organization. This graphical representation offers invaluable insights into 

Figure 2: Visualization depicting the Relationship between Principal 

Component Analysis (PCA) Components and Explained Variance 

(left) alongside the Impact of Component Numbers on Classification 

Accuracy (right). 
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the underlying structure of feature correlations, unveiling potential clusters or groups of features exhibiting similar 

behavioral patterns. The dendrogram showcased in Figure 3 serves as a pivotal tool for comprehending feature 

relationships and structuring subsequent analyses within the dataset, enabling a more nuanced understanding of feature 

interdependencies crucial for subsequent modeling and interpretation. 

In Table 1, a comprehensive evaluation and comparative analysis of various ML classifiers' performance metrics are 

meticulously presented. This comparative assessment encapsulates a detailed scrutiny of multiple classifiers, 

dissecting their performance across diverse evaluation metrics such as accuracy, precision, recall, and F1-score. The 

table provides a succinct yet comprehensive overview of each classifier's efficacy in handling the dataset, offering 

insights into their strengths and weaknesses concerning predictive performance. Through this comparative analysis, 

the table serves as a valuable reference point for understanding the relative merits of each classifier, aiding in the 

selection of the most suitable model based on specific performance criteria. The comprehensive presentation of 

multiple classifiers' performance metrics within Table 1 facilitates informed decision-making and highlights the 

nuances of each model's predictive capabilities within the context of the study's dataset. 

 

Table 1: Comparative Performance Metrics of Various ML Classifiers. 

model Accuracy f1_score  Precision  Recall  RoC_AUC 

LogisticRegression 0.8181 0.8403 0.7487 0.9575 0.8181 

GaussianNB 0.9236 0.9198 0.9677 0.8764 0.9236 

BernoulliNB() 0.8567 0.8561 0.8599 0.8524 0.8567 

KNeighborsClassifier 0.9866 0.9868 0.9749 0.9990 0.9866 

DecisionTreeClassifier 0.9906 0.9906 0.9875 0.9937 0.9906 

DecisionTreeClassifier 0.9951 0.9951 0.9928 0.9974 0.9951 

VotingClassifier 0.9889 0.9890 0.9817 0.9964 0.9889 

 

 

 

Figure 3: Dendrogram Illustrating Hierarchical Feature Correlations. 
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Figure 4 offers a comprehensive visualization portraying the branching structure of a Decision Tree (DT) model. This 

intricate visual representation meticulously maps out the hierarchical decision-making process employed by the DT 

algorithm. Each node within the tree signifies a decision point based on specific features, with branches extending to 

subsequent nodes representing further attribute splits or decision pathways. Through this graphical depiction, the 

branching patterns of the DT model are elucidated, showcasing the sequence of feature conditions and their 

hierarchical importance in determining the final predictions or classifications made by the model. This visualization 

in Figure 4 serves as a valuable tool for comprehending the decision logic employed by the DT algorithm, providing 

an intuitive and transparent illustration of its rule-based approach to predictive modeling within the context of the 

study's dataset. 

5. Conclusion  

This study marks a pivotal step forward in the realm of real-time monitoring for air pressure systems in heavy-duty 

vehicles, specifically addressing the challenges encountered within Scania trucks. Through the development and 

empirical validation of a dedicated Data Fusion Framework, this research showcases a promising approach to 

enhancing operational safety and reliability. The comparative performance analysis of multiple machine learning 

classifiers emphasized the superiority of our framework in handling the complexities of air pressure system 

monitoring. By amalgamating these methodologies, this study not only contributes a robust framework for proactive 

anomaly detection but also underscores the potential for fostering safer and more efficient heavy-duty vehicle 

operations. As the automotive industry progresses towards predictive maintenance and real-time monitoring 

paradigms, this research stands as a foundation, paving the way for continued advancements in enhancing the 

reliability and safety standards of heavy-duty vehicle systems. 
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