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Abstract 

The industrial sector is among the most suited sectors that may considerably advantage from the 

implementation of the ideas and technology of the Industrial Internet of Things (IIoT), and it is one of 

the most competitive industries in the world. The increased use of automated processes in 

manufacturing sectors results in a wide variety of applications based on IIoT. These applications call 

for the efficient integration of a wide variety of different systems and the execution of smooth 

operations across all machines. The issue of integration and smooth operation presents IIoT as a new 

subject of study in smart manufacturing. This carries with it several problems, including those on 

security, accountability, confidence, and dependability. As part of the Industrial Internet of Things 

(IIoT), many devices will be linked to one another and interact with one another through wireless and 

internet infrastructure. When this kind of situation plays out, the reliability of the IIoT devices 

becomes a key component in the process of preventing injection by hostile machines. As a result, an 

intelligent computer model is required to effectively cluster and categorize the level of trustworthiness 

possessed by the IIoT devices. In this article, we describe a trust model for the Internet of Things 

(IIoT) that is based on the neutrosophic TOPSIS and is utilized by IIoT apps to determine the trust 

score of IIoT devices. The reliability of devices is evaluated by the model that was constructed using 

the historical knowledge, chronological knowledge, and network behavior information that is received 

from IIoT devices. In addition to that, the model suggests KNN, and a Decision tree to categorize the 

attributes that were collected. 
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1. Introduction 

Integration of advanced computer technology into many business sectors is taking place with the 

purpose of achieving better levels of efficiency and capability. The Internet of Things (IoT), which 

supports a future of linked gadgets that may connect and interact with one other for automated 

purposes, is one example of a tech that has been extensively embraced in recent years and is continuing 

to do so. The Internet of Things (IoT) is becoming an increasingly industry-wide phrase, which has 

resulted in the development of specialized services in this field that place a greater emphasis on 

precision and effectiveness. One example of a deployment of the Internet of Things that are more 

narrowly focused is the Industrial Internet of Things (IIoT). The Industrial Internet of Things (IIoT) 

is an implementation of the Internet of Things (IoT) that is used in industrial settings. In this kind of 

IoT deployment, a large number of pieces of hardware and software are linked to a network by using 

a wide variety of software and hardware tools. In spite of these numerous advantages, the primary 

goal of Industry-standard 5.0 is still to make various industries safer, more intelligent, and more 

sophisticated[1]–[3]. In the context of Industry 5.0, the fundamental idea behind smart manufacturing 

is to construct a robust intelligent network structure across the entirety of the supply chain. This is 

accomplished by providing connections among diverse manufacturing units, like manufacturing, 

storage facilities, construction machinery, facility centers, and delivery networks. In other words, the 
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goal is to digitize the entire supply chain[4], [5]. The names "Industry 5.0 norm," "industrial IoT," and 

"smart factory" are not interchangeable; rather, the following is an explanation of how these distinct 

but related areas of research are organized: 

Industry 5.0: The construction of steam power was the primary emphasis of Industry 1.0, while the 

introduction of mass manufacturing in the 1870s was the primary focus of Business 2.0. Industry 5.0: 

The year 1970 marked the beginning of the age of digital electronic equipment, which is when Industry 

3.0 emerged. The concept of computerizing industrial sectors may be traced back to the German 

government, which dubbed the initiative "industry 4.0." The term "4.0" alludes to the fourth 

technological revolution, which focuses on integrating artificial intelligence into manufacturing 

equipment. In the fourth industrial revolution, known as Industry 4.0, malware systems (CPS) like the 

Internet of Things, configuration management, cloud services, and other innovations are incorporated 

into the production processes. The term "Industry 4.0" refers to the industry's complete digital 

transition, whereas "Industry 5.0" is predicated on mass personalization, cognitive processing systems, 

and other similar concepts. Both Industry 4.0 and Industry 5.0 have been proposed by separate 

organizations, but they share many of the same guiding principles, methodologies, and technological 

advancements. The human-centricity, sustainability, and resilience of businesses are the three pillars 

on which Industry 5.0 is built. An increased level of individualization is one of the factors that will be 

considered by Industry 5.0. The transition from Industry 4.0 to Business world 5.0 paves the way for 

the development of senior positions and relieves product managers of the responsibility of producing 

their designs[6], [7]. 

The Industrial Internet of Things (IIoT) is a subset of the Internet of Things that is designed 

specifically for use in commercial settings, such as those found in manufacturing, energy, 

transportation, and agriculture. The Industrial Internet of Things (IIoT) is a term that refers to 

intelligent sensors, machine connections, and industrial automation that are utilized to enhance the 

productivity and dependability of industrial operations. The term "IIoT" refers to the M2M devices 

that are integrated into various industrial control systems and automation systems[8]. 

Absent options that are trustworthy and secure, the IIoT will never realize its full potential. The 

implications of safety breaches may be severe, particularly when working with actuators that have the 

potential to inflict physical harm on their targets. Applications of the Internet of Things that are not 

mission-critical often make advantage of the trust mechanism. When first developed, the mechanisms 

of trust and reputation were used in huge systems to facilitate communications between many 

corporate organizations. Following that, both trust and notoriety have been implemented into 

applications related to information technology and online commerce. In addition, if the power to 

handle data is restricted, different forms of trust must be used. Because of all of these aspects, trust 

emerges as a potentially useful option for enhancing and bolstering the safety of IoT networks[9]. 

 

The following are some of the contributions that this work has made: 

 

I. To begin, we have presented the trust measures for the spatial knowledge (SK), the temporal 

experience (TE), and the behavior pattern (BP) based on a large number of trust attributes in 

order to reflect the qualities and events that are associated with the IIoT device. 

 

II. As a second step, we have suggested the neutrosophic TOPSIS for the applications of the 

Internet of Things (IIoT) determine the trust score of the IIoT devices. 

 

III. In addition, we have developed a neutrosophic decision tree and KNN to categorize the 

extracted features to build the final trust score, which can then be used for further decision-

making. 

 

 

 

https://doi.org/10.54216/JNFS.010107


Journal of Neutrosophic and Fuzzy Systems (JNFS)                                            Vol. 01, No. 01, PP. 59-68, 2021 

 

DOI: https://doi.org/10.54216/JNFS.010107  61 

2. Internet of Things 

 

The phrase "Internet of Things" refers to a collection of "things" that have been outfitted with 

programming, computers, actuators, and detectors, and have been connected to the internet so that 

they may share and gather information with one another (IoT). The Internet of Things nodes is 

composed of wearable sensors and processing energy, both of which are intended to be present and 

common in a variety of business sectors. Household automation based on the Internet of Things refers 

to the possibility of managing home appliances using electronically managed and Internet-connected 

technologies. In addition, the Internet of Things offers cities innovative opportunities to make use of 

information in order to manage transportation, cut pollution, improve the efficiency with which 

infrastructure is used, and keep inhabitants safe and clean[10]. After that, the Smart Grid is a 

component of an Internet of Things system that can remotely monitor and manage everything, 

including lights, road markings, heavy traffic, parking, and the forecast of things comparable to power 

influxes as the result of catastrophic events and disasters. IoT devices that are outfitted with sensors 

are employed in order to monitor the location of medical equipment in real-time. Examples of such 

equipment include scooters, oxygen pumps, cardioverters, and other surveillance gear. Forecast 

management is one of the most promising aspects of the Internet of Things in the car industry. The 

technology is able to gather data from chips and sensors installed all over a connected vehicle, which 

can then be analyzed in the cloud and used to predict when the vehicle will need repair. The Internet 

of Things (IoT) in the industry might connect machines, equipment, and sensors to an outlet, which 

would provide much-needed insight into production for process engineers and management. Using 

sensors such as brake beams and RFID, for instance, businesses could be able to carry out impromptu 

spot checks of certain regions as workers go through the assembly[11]. 

 

Several Internet of Things nodes is deployed in areas of the natural environment that are inaccessible 

to electrical power sources. The nodes only have a limited amount of power that is sufficient to carry 

out the function for which they were designed and the critical safety orders that, in most cases, deplete 

the battery power. Three different approaches are practical that may be used to solve the issue with 

battery life. The most essential approach is to use the fewest safety requirements on the node, which 

is not encouraged, especially when handling sensitive information. However, this is the way that 

should be used since it is the most necessary. The second strategy involves increasing the capacity of 

the battery. Because the majority of Internet of Things nodes are planned and intended to be of 

compact volume and weight, there is less room for a bigger battery. The ultimate approach generates 

sufficient electricity using just renewable resources. However, these improvements to nodes would 

need the use of more complex components, which would increase the monetary cost of nodes[12], 

[13]. 

 

3. Industrial Internet of Things 

 

In today's world, new company operations face many obstacles, including the necessity to move 

products on time, the presence of competitive pressure, new standards, and creative trade techniques. 

Because of this, many businesses rely on the Industrial Internet of Things (IIoT), which refers to all 

or any achievements carried out by companies to prototype, monitor, and improve their business 

procedures during the gathering of insights from multitudes of allows us to connect, things, and 

computer systems to support them in attaining economic profit. As a result, many companies rely on 

the Industrial Internet of Things (IIoT). As its name suggests, the Industrial Internet of Things (IIoT) 

is a concept that utilizes the Internet to connect and manage different computers, gadgets, and 

machinery used in industrial settings[14], [15]. 

 

The term "Industry 4.0" refers to the convergence of the Internet of Things (IoT) with the traditional 

industrial value chain. The Industrial Internet of Things is the most appropriate engine for creativity 

that can be used to reduce operating costs (OPEX) and capital spending (CAPEX), monitor, and 

improve business procedures regardless of how challenging they are, and enable creative business 

model development. The IIoT has reaped the benefits of growing attention from both academia and 

industry, which has resulted in exponential developments in the field's use of modern approaches. For 

instance, utilizing big data methods, a large amount of sensor information is collected and uploaded 

to the cloud in order to make an intelligent decision. The additive manufacturing process, often known 

as 3D printing, may be used in production to generate changed items of numerous shapes at cheaper 

costs and within shorter periods [16], [17]. 
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The Internet of Things (IoT) in the industrial sector has seen an explosive expansion in recent years 

because of several developments in both industry and technology. The invention of steam engines in 

the 18th century laid the groundwork for one of the most significant advances in industrial progress. 

Because of the mechanization that was made possible by steam engines, factory output was able to go 

from the period of clean manual labor to the era of automation which led to a significant rise in overall 

output. During the 1870s, machines that were previously driven by steam were gradually replaced by 

machines that were propelled by electrical energy. Concurrently, the specialization of specialized 

industries led to another industrial breakthrough in the form of an explosion in output. The 1960s saw 

the beginning of what is now known as the "digitalization" revolution, which was the third industrial 

revolution. During this period of change, the use of programmable controllers and advanced 

electronics to increase production efficiency resulted in the development of new industrial 

automation[18], [19]. 

 

The methods of communication and information quickly changed from the beginning of the 20th 

century through the start of the 21st century, resulting in the development of newer technical 

spectrums. These methods significantly improved industrial productivity by enhancing the levels of 

intelligence present in the sensing, communication, decision-making, and production spheres. The 

IIoT has lately become mainstream in both the industrial and educational sectors. This may be 

attributed to the concept of integration as well as enhanced data collection strategies inside traditional 

companies. In 2011, the Hanover Fair was the primary venue at which Industry 4.0 was used to launch 

the 4th industrial transformation and generate a great deal of awareness in Europe[20], [21]. 

 

Within the framework of the Industrial Internet of Things (IIoT), machines collaborate to perform 

tasks without the need for human intervention. These machines are intelligent enough to adapt to a 

variety of application scenarios relating to healthcare, production, supply chain, and remote 

monitoring. Contact between machines, also known as machine-to-machine (M2M), enables the nodes 

that make up the Internet of Things to independently share data. The effective use of the 'Big data' 

technology developed by machines has the advantage of using the obtained information to enhance 

the scheme implementation by producing important domain-specific knowledge. With its omnipotent 

and omniscient sense, information connectivity, information gathering, and information investigation 

capabilities, the Industrial Internet of Things (IIoT) is being hailed as a potentially fruitful solution to 

the problem of how to bring successful applications into the 21st century. This is accomplished by 

connecting physical objects and enabling the combined mechanization of things and industrial 

processes[22], [23]. 

 

The Industrial Internet of Objects (IIoT) ensures the connectivity of disparate things by using a wide 

variety of software platforms, actuators, and sensors that are designed to detect and collect data from 

their immediate environments and, as a result, cause devices to perform certain activities. Because of 

recent developments in information and communication technology, some of the inherent constraints 

of IIoT have been eliminated (ICT). For instance, ambient backscatter may help IIoT devices attain 

higher power by assisting in interactions. In addition, information technology on mobile devices may 

extend the capabilities of an IIoT device by outsourcing process-intensive chores to edge servers. This 

frees up the mobile device to focus on other tasks. In addition, the current state of blockchain 

technology creates difficulties that are analogous to weaknesses in compatibility, safety, and 

secrecy[24]. 

4. Neutrosophic-based Machine Learning Approach 

Building trust takes time and requires consideration of a wide range of factors, both internal and 

external to the relationship being considered. The trust ratings are regularly updated whenever there 

is a new interaction that takes place. Beginning with a fresh encounter, the trust computation cycle 

then moves through steps of evaluation, computation, and experience. The level of trust between two 

IIoT devices affects the consumption habits of a particular service that is provided by the other device. 

This, in turn, influences the choice of whether an IIoT device will engage in a transaction with some 

other IIoT device. Building trust in a biological body is relatively simple; nevertheless, it is impossible 

to develop trust in a machine system since computers do not have senses. In addition, the optimal 

trustworthiness score that can be assigned to an object with a high degree of accuracy is difficult to 

measure. If everything is understood and viewed differently, then this is a much more challenging 

task. Therefore, various programs that operate on the IIoT devices may give a given device a varied 

trust score depending on how they interact with it. These trust scores may include trustworthy, 

extremely trustworthy, and non-trustworthy. These variances add another layer of complexity to the 
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process of deciding whether an IoT device can be trusted. As a result, it is essential to develop a 

mathematical model that specifies the traits or properties that are common to all forms of trust. 

Because the IIoT creates such a huge quantity of data, it is difficult to determine how much of it can 

be employed directly to determine the trust score. As a result, it seems to become important to define 

the trust specifically for a certain application, a time range, and a context. Figure 1 shows the 

methodology.  

 

 
 

Figure 1: The neutrosophic-based machine learning  

 

Neutrosophic TOPSIS Method 

 

The trust computer simulation that has been developed for the industrial IoT can accommodate a wide 

variety of devices, including actuators, sensors, and controllers. The suggested mathematical model is 

not reliant on the underlying architecture or protocols in any way. The IIoT device may have many 

distinct traits, like its location, classification, identity, its technology, its MAC address, its IP address, 

its signal-to-noise ratio, its utilization (activity), its age, and other device attributes. The trust 

calculation will be affected in a variety of ways by the properties of the device. As part of this body 

of work, we have suggested a computational model for the calculation of trust that is based on machine 

learning. The machine learning model includes the calculation of a trust score by utilizing TOPSIS, 

neutrosophic K-NN grouping, and a neutrosophic Decision Tree for categorizing the extracted 

attributes to provide a final trust score that can be used for decision-making[25], [26]. 

Developed by Yoon and Hwang, the outranking method known as the Technique for Order 

Preferences by Similarity to Ideal Solution (TOPSIS) ranks preferences in descending order. It is 

predicated on the premise that the optimal option should have the smallest distance possible between 

itself and the positive ideal solution, and the greatest distance possible between itself and the negative 

ideal solution. The positive ideal solution is the optimal answer because it satisfies all of the criteria 
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with the highest possible value, while the negative ideal solution satisfies all of the criteria with the 

lowest possible value. It is a well-known strategy to outranking that is used for selection in a variety 

of areas, including the choice of suppliers and websites, amongst other applications. 

 

Perform the calculations for the weighted matrix. Find out what the good and bad aspects of the perfect 

solution are. Determine the amount of space that separates each potential outcome and the positive 

and negative ideal solutions. Calculate the relative proximity coefficient. 

 

 

Decision Tree  

 

Decision Trees are supervised machine learning algorithms that can predict a variable that represents 

a goal. This is accomplished by assessing a collection of supplied input variables using a tree-like 

structure of rules that regulate the connection between the input and output variables. The training 

process for this tree-based supermodel begins with the assignment of a root node, which is supposed 

to represent all of the data. Afterward when, this original root node is even further subdivided and 

partitioned into decision nodes, each of which is constructed based on the values of characteristics 

that are used for the goals of prediction. These decision nodes are often shown by a collection of 

branches, with the top branch illustrating the observations count signifying instances that are to be 

allocated to a lower subsidiary. This procedure of branching out is performed many times until a point 

is reached when all of the observations included inside a decision point carry a categorization that is 

comparable to one another. A leaf node is a point in a decision tree at which the process of branching 

and dividing decision nodes comes to an end[27], [28]. 

 

The process of branching begins with picking the variable that is most suited to operate as a splitting 

variable from the set of parameters that have been provided. This decision is made after a comparison 

of the relative splitting quality of each of the variables. In the event of a predictor variable that is based 

on continuous data, each variable may be employed as an element of the established process. On the 

other hand, when using a model with a categorical predictor variable, the values of the target variables 

that are represented in each category are what are used to separate the branches[29]–[31]. 

 

The procedure for dividing the data is carried out based on the value that is produced from the equation 

below, which represents the statistical Pearson Chi-Squared (2) test of the predictor variables. 

 

𝑥2 =  ∑
(𝑜𝑖−𝐸𝑖)2

𝐸_𝑖

𝑘
𝑖=1                                                                                                               (1)                                                                                   

 

 

The procedure for splitting that was described before is carried out recursively until all the provided 

opportunities have been exceeded by one of the logs' worth values. 

 

The greater the size of a decision tree, the greater the overall complexity of the tree, which in turn 

might increase the risk of the model overfitting, which in turn decreases the tree's resilience. As a 

result, pruning may be used on the established model in a way that simplifies it without losing the 

overall accuracy. This is accomplished by eliminating leaves from trees that aren't essential to 

maintain a high degree of accuracy. 

 

KNN Algorithm 

 

KNN is an algorithm for supervised machine learning that is applied for the objectives of both 

regression and classification. The KNN is an algorithm that, in general, has a low level of complexity 

and a high level of application. This is due to its capacity to provide a highly accurate prediction with 

just a little amount of training being required and a small number of parameters that need to be tuned. 

 

The following are the stages that are often included in a KNN classification procedure. They are used 

to identify the class of an instance being tested by first acquiring the class of its nearby peer 

instances[32], [33]. 

 

Setting a K value, which is used to calculate distances between a testing instance and all of the 

accessible input training datasets, is the first stage in performing a KNN classification. Once this step 

is complete, the classification may continue. To place the testing instance in the category that 
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corresponds to the one that is most often shown by its K nearby points, these distances are used to 

generate the K training examples that display the minimum number of distance computations. In 

addition, the allocation of a class to the checking instance is accomplished by first determining the 

proportion of the various classes that are accessible within the K nearby instances, and then the testing 

instance selects the class that received the largest number of votes. As a further point of interest, the 

Minkowski Distance is often used in the process of calculating distances in a standard KNN 

scenario[34], [35]. 

 

𝐷 = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1

𝑓
)

1

𝑓                                                                                                                              (2) 

In addition, the classification of the value of K can be driven by the data, in which case a cross-

validation strategy can lead to the selection of the number of K that is the most effective and indicative 

of the data, and where higher values can reduce the effect of noise while also leading to less 

distinguishable boundaries within classes. Experimenting with the behavior of the model using a 

variety of various K values and choosing the value that achieves the maximum level of performance 

is a more flexible method. 

 

5. Numerical Illustration  

 

To produce the datasets, we undertake simulations of the various properties of the IoT nodes that are 

represented by five associated sensors. The dataset for the 100 IoT nodes was prepared with a little 

deviation in the pattern. This was done. The impacts of distance among sensors have indeed been 

simulated by adding a minor offset and some small variations to each sensor's output. This was done 

so that the data would be comparable. There are three criteria such as spatial knowledge, the 

experience of temporal, and pattern of behavior. Table 1 shows the opinions of decision-makers. The 

spatial has the highest weight followed by pattern and temporal. Table 2 shows the normalization 

matrix. Device 7 is the best deception and device 2 is the worst device. 

 

Table 1: The expert’s survey. 

 C1 C2 C3 

Device 1 0.8 0.65 0.49 

Device 2 0.63 0.47 0.55 

Device 3 0.72 0.72 0.43 

Device 4 0.48 0.43 0.73 

Device 5 0.88 0.46 0.88 

Device 6 0.66 0.59 0.6 

Device 7 0.66 0.9 0.7 

 

 

Table 2: The normalization matrix. 

 C1 C2 C3 

Device 1 0.431878 0.394381 0.288495 

Device 2 0.340104 0.285168 0.323821 

Device 3 0.38869 0.436853 0.253169 

Device 4 0.259127 0.260899 0.429799 

Device 5 0.475065 0.279101 0.518113 

Device 6 0.356299 0.357977 0.353259 

Device 7 0.356299 0.546067 0.412136 

 

After doing an analysis of the interactions that took place in the reliable region, we marked the dataset 

using the details. The cluster centroid points that are located inside the untrustworthy region have been 

labeled as untrustworthy, whilst those that are located outside of the area have been labeled as 

trustworthy. These data are tagged in a way that allows them to be taught to recognize interactions. In 

order to avoid the issue of overfitting, we tested the model with a very small number of training 

examples. The confusion matrix form will be used to calculate how well the suggested classification 

would work, displaying both the current and expected adding intelligence on trustworthiness (T) and 

untrustworthiness (U). The suggested machine learning model has a lower false positive rate (FPR) 

and a higher true negative rate (TNR) in comparison to previous approaches, which demonstrates the 

superiority of the model that we have presented. 
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The results that were obtained from the confusion matrix contain a variety of performance analyses, 

including precision, NPV, accuracy, specificity, and sensitivity. These performance parameters are 

computed depending on the true positive (TP), the true negative (TN), the false positive (FP), and the 

false negative (FN) (FN). Following the learning of the sample, 115 of the 117 encounters that were 

determined to be untrustworthy were accurately categorized as having untrustworthiness, while two 

were incorrectly labeled. Figure 2 shows the accuracy of the KNN and the decision tree algorithm. 

 

 
Figure 2: The comparison algorithm between KNN and decision tree. 

 

6. Conclusion  

 

As an alternative to the conventional weighted techniques, the work presented here suggests a unique 

way of calculating trust that makes use of an algorithm for machine learning to assess whether an 

interaction among IIoT devices can be trusted. We have developed a general-purpose computational 

framework that can be used for device interactions to facilitate, weight calculation, and classification. 

The reliability of the devices is evaluated using the model that was constructed using the geographical 

information, the temporal experience, and the behavioral pattern collected from the IIoT devices. To 

determine which kinds of experiences may be trusted, the first essential stage is putting into practice 

an unsupervised technique of labeling data in line with its trustworthiness. The neutrosophic TOPSIS, 

KNN, and decision tree approaches that were suggested are capable of accurately identifying the trust 

boundaries and producing the final trust score. 
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