Volume 1 , Issue 1 , PP: 47-55, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Murtada Ali Maqdisi 1 *
Doi: https://doi.org/10.54216/PMTCS.010104
We study under some conditions on p, m and suitable conditions on g, the decay of solutions of the nonlinear viscoelastic hyperbolic equation in problem (P) as t→+∞, with Ω is a bounded domain in R^N (N>1), with smooth boundary Γ, and a, b, w are positive constants, m≥2, P≥2, and the function g(t) satisfying some conditions. We show that the energy of solutions decays exponentially if m =2 and polynomial if m >2, provided that the initial data are small enough.
Partial Differential equation , hyperbolic equation , nonlinear , viscoelastic
[1] Ball, J. (1977)."Remarks on blow up and nonexistence theorems for nonlinear evolutions equations". Quart. J. Math. Oxford, (2) 28. 473-486.
[2] Berrimi, S. & Messaoudi, S. (2004). "Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping". Electronic journal of differential equations. 88. 1-10.
[3] Berrimi, S. & Messaoudi, S. (2006). "Existence and decay of solutions of a viscoelastic equation with a nonlinear source". Nonlinear analysis. 64. 2314-2331.
[4] Cavalcanti, M. M. Calvalcanti, V. N. D. & Soriano, J. A. (2002). "Exponential decay for the solutions of semilinear viscoelastic wave equations with localized damping". Electronic journal of differential equations. 44. 1-44.
[5] Cavalcanti, M. M. & Oquendo, H. P. (2000). "Frictional versus viscoelastic damping in a semilinear wave equation". SIAM journal on control and optimization. 42(4). 1310-1324.
[6] Cavalcanti, M. M. Cavalcanti D. V, N. & Ferreira, J. (2001). "Existence and uniform decay for nonlinear viscoelastic equation with strong damping". Math. Meth. Appl. Sci, 24. 1043-1053.
[7] Cavalcanti, M. M. Cavalcanti, D. V. N, P. J. Filho, S. & Soriano, J. A. (2001). "Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping". Differential and integral equations, 14(1). 85-116.
[8] Dafermos, C. M. (1970). "Asymptotic stability in viscoelasticity". Arch. Rational Mech. Anal. 37. 297-308.
[9] Gazzola, F. & Sequassina, M. (2006). "Global solution and finite time blow up for damped semilinear wave equation". Ann. I. H. Pointcaré-An 23185-207.
[10] Georgiev, V. & Todorova, G. (1994). "Existence of solution of the wave equation with nonlinear damping and source terms". Journal of differential equations 109. 295-308.
[11] Gerbi, S. & Said-Houari, B. (2010). "Exponential decay for solutions to semilinear damped wave equation". Discrete and Continuous Dynamical Systems.
[12] Haraux, A. & Zuazua, E. (1988). "Decay estimates for some semilinear damped hyperbolic problems". Arch. Rational Mech. Anal. 150. 191-206.
[13] Hrusa, W. J. & Renardy, M. March (1988). "A model equation for viscoelasticity with a strongly singular kernel" SIAMJ. Math. Anal. 19(2).
[14] Ikehata, R. (1996). "Some remarks on the wave equations with nonlinear damping and source terms". Nonlinear Analysis. 27(10). 1165-1175.
[15] Kalantarov, V. K. & Ladyzhenskaya, O. A. (1978). "The occurrence of collapse for quasilinear equation of parabolic and hyperbolic type". J. Soviet Math. 10. 53-70.
[16] Kopackova, M. (1989). "Remarks on bounded solutions of a semilinear dissipative hyperbolic equation". Comment Math. Univ. Carolin, 30(4). 713-719.
[17] Levine, H. A. (1974). "Instability and nonexistence of global solutions of nonlinear wave equation of the form Pu_tt=Au+F(u"). Trans. Amer. Math. Sci, 192. 1-21.
[18] Levine, H. A. (1974). "Some additional remarks on the nonexistence of global solutions of nonlinear wave equation" SIAMJ. Math. Anal. 5. 138-146.
[19] Levine, H. A. & Serrin, J. (1997). "A global nonexistence theorem for quasilinear evolution equation with dissipative". Arch. Rational Mech Anal. 137. 341-361.
[20] Messaoudi, S. (2003). "Blow up and global existence in a nonlinear viscoelastic wave equation". Maths Nachr. 260. 58-66.
[21] Messaoudi, S. & Said-Houari, B. (2004). "Global nonexistence of solutions of a class of wave equations with nonlinear damping and source terms". Math. Meth. Appl. Sc. 27. 1687-1696.
[22] Messaoudi, S. & Tatar, N-E. (2003). "Global existence and asymptotic behavior for a nonlinear viscoelastic problem". Mathematical. Sciences research journal.7(4). 136-149.
[23] Messaoudi, S. & Tatar, N-E. (2007). "Global existence and uniform stability of a solutions for quasilinear viscoelastic problem". Math. Meth. Appl. Sci. 30. 665-680.
[24] Messaoudi, S. (2001). "Blow up in a nonlinearly damped wave equation" Math. Nachr. 231. 1-7.
[25] Munoz Rivera, J. E. & Naso, M. G. (2006). "On the decay of the energy for systems with memory and indefinite dissipation". Asymptote. anal. 49(34). 189204.
[26] Pata, Vi. September (2006). "Exponential stability in viscoelasticity". Quarterly of applied mathematics volume LXIV. number3. 499-513.
[27] Rivera, J. E. M. & Lapa, E. C. & Barreto, R. K. (1996). "Decay rates for viscoelastic plates with memory" Journal of elasticity 44. 61-87.
[28] Vittilaro, E. (1999). "Global nonexistence theorems for a class of evolution equations with dissipation". Arch. Rational Mech. Anal. 149. 155-182.