Pure Mathematics for Theoretical Computer Science

Journal DOI

https://doi.org/10.54216/PMTCS

Submit Your Paper

2995-3162ISSN (Online)

Volume 1 , Issue 1 , PP: 47-55, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation

Murtada Ali Maqdisi 1 *

  • 1 College Of Pharmacy, AL-Farahidi University, Baghdad, Iraq - (maqdisidrmurtada@uoalfarahidi.edu.iq)
  • Doi: https://doi.org/10.54216/PMTCS.010104

    Received: September 28, 2022 Revised: November 19, 2022 Accepted: January 17, 2023
    Abstract

    We study under some conditions on p, m and suitable conditions on g, the decay of solutions of the nonlinear viscoelastic hyperbolic equation in problem (P) as t→+∞, with Ω is a bounded domain in R^N (N>1), with smooth boundary Γ, and a, b, w are positive constants, m≥2, P≥2, and the function g(t) satisfying some conditions. We show that the energy of solutions decays exponentially if m =2 and polynomial if m >2, provided that the initial data are small enough.

    Keywords :

    Partial Differential equation , hyperbolic equation , nonlinear , viscoelastic

    References

    [1] Ball, J. (1977)."Remarks on blow up and nonexistence theorems for nonlinear evolutions equations". Quart. J. Math. Oxford, (2) 28. 473-486.

    [2] Berrimi, S. & Messaoudi, S. (2004). "Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping". Electronic journal of differential equations. 88. 1-10.

    [3] Berrimi, S. & Messaoudi, S. (2006). "Existence and decay of solutions of a viscoelastic equation with a nonlinear source". Nonlinear analysis. 64. 2314-2331.

    [4] Cavalcanti, M. M. Calvalcanti, V. N. D. & Soriano, J. A. (2002). "Exponential decay for the solutions of semilinear viscoelastic wave equations with localized damping". Electronic journal of differential equations. 44. 1-44.

    [5] Cavalcanti, M. M. & Oquendo, H. P. (2000). "Frictional versus viscoelastic damping in a semilinear wave equation". SIAM journal on control and optimization. 42(4). 1310-1324.

    [6] Cavalcanti, M. M. Cavalcanti D. V, N. & Ferreira, J. (2001). "Existence and uniform decay for nonlinear viscoelastic equation with strong damping". Math. Meth. Appl. Sci, 24. 1043-1053.

    [7] Cavalcanti, M. M. Cavalcanti, D. V. N, P. J. Filho, S. & Soriano, J. A. (2001). "Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping". Differential and integral equations, 14(1). 85-116.

    [8] Dafermos, C. M. (1970). "Asymptotic stability in viscoelasticity". Arch. Rational Mech. Anal. 37. 297-308.

    [9] Gazzola, F. & Sequassina, M. (2006). "Global solution and finite time blow up for damped semilinear wave equation". Ann. I. H. Pointcaré-An 23185-207.

    [10] Georgiev, V. & Todorova, G. (1994). "Existence of solution of the wave equation with nonlinear damping and source terms". Journal of differential equations 109. 295-308.

    [11] Gerbi, S. & Said-Houari, B. (2010). "Exponential decay for solutions to semilinear damped wave equation". Discrete and Continuous Dynamical Systems.

    [12] Haraux, A. & Zuazua, E. (1988). "Decay estimates for some semilinear damped hyperbolic problems". Arch. Rational Mech. Anal. 150. 191-206.

    [13] Hrusa, W. J. & Renardy, M. March (1988). "A model equation for viscoelasticity with a strongly singular kernel" SIAMJ. Math. Anal. 19(2).

    [14] Ikehata, R. (1996). "Some remarks on the wave equations with nonlinear damping and source terms". Nonlinear Analysis. 27(10). 1165-1175.

    [15] Kalantarov, V. K. & Ladyzhenskaya, O. A. (1978). "The occurrence of collapse for quasilinear equation of parabolic and hyperbolic type". J. Soviet Math. 10. 53-70.

    [16] Kopackova, M. (1989). "Remarks on bounded solutions of a semilinear dissipative hyperbolic equation". Comment Math. Univ. Carolin, 30(4). 713-719.

    [17] Levine, H. A. (1974). "Instability and nonexistence of global solutions of nonlinear wave equation of the form Pu_tt=Au+F(u"). Trans. Amer. Math. Sci, 192. 1-21.

    [18] Levine, H. A. (1974). "Some additional remarks on the nonexistence of global solutions of nonlinear wave equation" SIAMJ. Math. Anal. 5. 138-146.

    [19] Levine, H. A. & Serrin, J. (1997). "A global nonexistence theorem for quasilinear evolution equation with dissipative". Arch. Rational Mech Anal. 137. 341-361.

    [20] Messaoudi, S. (2003). "Blow up and global existence in a nonlinear viscoelastic wave equation". Maths Nachr. 260. 58-66.

    [21] Messaoudi, S. & Said-Houari, B. (2004). "Global nonexistence of solutions of a class of wave equations with nonlinear damping and source terms". Math. Meth. Appl. Sc. 27. 1687-1696.

    [22] Messaoudi, S. & Tatar, N-E. (2003). "Global existence and asymptotic behavior for a nonlinear viscoelastic problem". Mathematical. Sciences research journal.7(4). 136-149.

    [23] Messaoudi, S. & Tatar, N-E. (2007). "Global existence and uniform stability of a solutions for quasilinear viscoelastic problem". Math. Meth. Appl. Sci. 30. 665-680.

    [24] Messaoudi, S. (2001). "Blow up in a nonlinearly damped wave equation" Math. Nachr. 231. 1-7.

    [25] Munoz Rivera, J. E. & Naso, M. G. (2006). "On the decay of the energy for systems with memory and indefinite dissipation". Asymptote. anal. 49(34). 189204.

    [26] Pata, Vi. September (2006). "Exponential stability in viscoelasticity". Quarterly of applied mathematics volume LXIV. number3. 499-513.

    [27] Rivera, J. E. M. & Lapa, E. C. & Barreto, R. K. (1996). "Decay rates for viscoelastic plates with memory" Journal of elasticity 44. 61-87.
    [28] Vittilaro, E. (1999). "Global nonexistence theorems for a class of evolution equations with dissipation". Arch. Rational Mech. Anal. 149. 155-182.

    Cite This Article As :
    Ali, Murtada. The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Pure Mathematics for Theoretical Computer Science, vol. , no. , 2023, pp. 47-55. DOI: https://doi.org/10.54216/PMTCS.010104
    Ali, M. (2023). The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Pure Mathematics for Theoretical Computer Science, (), 47-55. DOI: https://doi.org/10.54216/PMTCS.010104
    Ali, Murtada. The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Pure Mathematics for Theoretical Computer Science , no. (2023): 47-55. DOI: https://doi.org/10.54216/PMTCS.010104
    Ali, M. (2023) . The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Pure Mathematics for Theoretical Computer Science , () , 47-55 . DOI: https://doi.org/10.54216/PMTCS.010104
    Ali M. [2023]. The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Pure Mathematics for Theoretical Computer Science. (): 47-55. DOI: https://doi.org/10.54216/PMTCS.010104
    Ali, M. "The Decay of The Solutions of a Nonlinear Viscoelastic Hyperbolic Equation," Pure Mathematics for Theoretical Computer Science, vol. , no. , pp. 47-55, 2023. DOI: https://doi.org/10.54216/PMTCS.010104