Financial Technology and Innovation

Submit Your Paper

Volume 2 , Issue 2 , PP: 27-36, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices

Ahmed Mohamed Zaki 1 * , Abdelaziz A. Abdelhamid 2 , Abdelhameed Ibrahim 3 , Marwa M. Eid 4 , El-Sayed M. El-Kenawy 5

  • 1 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (azaki@jcsis.org)
  • 2 Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt - (abdelaziz@cis.asu.edu.eg)
  • 3 School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain - (abdelhameed.fawzy@polytechnic.bh)
  • 4 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt - (mmm@ieee.org)
  • 5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt - (skenawy@ieee.org)
  • Doi: https://doi.org/10.54216/FinTech-I.020203

    Received: February 12, 2023 Accepted: June 28, 2023
    Abstract

    The transformative impact of traditional commerce by online marketplaces is exemplified through eBay, a global platform that facilitates diverse transactions via auctions. In this research, the dynamics of eBay auctions, crucial for buyers, sellers, and researchers, are delved into. The central inquiry revolves around the key factors shaping auction outcomes, examining bid behaviors and types. The study leverages a robust dataset from eBay, meticulously curated to encompass auction identifiers, bid details, pricing information, auction types, and temporal aspects. A comprehensive approach involves data preprocessing, ensuring reliability by addressing missing values and outliers. Rigorous exploration and validation validate the dataset's integrity. Machine Learning Techniques, including MLP, SVR, Linear Regression, Extra Trees, and Gradient Boosting, form the analytical backbone. Model evaluation reveals top-performing candidates, such as MLP Regressor (0.8084), SVR (0.8210), and Linear Regression (0.8173), exhibiting superior accuracy and reliability. These models are identified for adoption in future work, emphasizing nuanced predictions in eBay auctions. This research contributes to understanding online auction dynamics, offering practical insights for eBay users and the broader e-commerce community. The models identified pave the way for enhanced predictive capabilities and continuous refinement in deciphering factors influencing auction outcomes.

    Keywords :

    Online Auctions , Auction Dynamics , Machine Learning, MLP Regressor , SVR, Linear Regression , Extra Trees , Gradient Boosting.

    References

    [1]     Zhang, Z., Xu, H., Chen, K., Zhao, Y., & Liu, Z. (2023). Channel mode selection for an e-platform supply chain in the presence of a secondary marketplace. European Journal of Operational Research, 305(3), 1215–1235. https://doi.org/10.1016/j.ejor.2022.06.064

    [2]     Grebe, T., Ivanova-Stenzel, R., & Kröger, S. (2021). How do sellers benefit from Buy-It-Now prices in eBay auctions? Journal of Economic Behavior & Organization, 183, 189–205. https://doi.org/10.1016/j.jebo.2020.12.015

    [3]     Hu, L., Zhang, M., & Wen, X. (2023). Optimal distribution strategy of coupons on e-commerce platforms: Sufficient or scarce? International Journal of Production Economics, 266, 109031. https://doi.org/10.1016/j.ijpe.2023.109031

    [4]     You, M., Lin, H., & Liang, H. (2022). Dynamically integrated regression model for online auction data. Science China Mathematics, 65(7), 1531–1552. https://doi.org/10.1007/s11425-018-1721-8

    [5]     Adeel Abbas, M., Iqbal, Z., Zeeshan Khan, F., Alsubai, S., Binbusayyis, A., & Alqahtani, A. (2022). An ANN based bidding strategy for resource allocation in cloud computing using IoT double auction algorithm. Sustainable Energy Technologies and Assessments, 52, 102358. https://doi.org/10.1016/j.seta.2022.102358

    [6]     Maan, P., & Eswari, R. (2021). Identification of Online Auction Bidding Robots Using Machine Learning. In V. Suma, N. Bouhmala, & H. Wang (Eds.), Evolutionary Computing and Mobile Sustainable Networks (pp. 249–260). Springer. https://doi.org/10.1007/978-981-15-5258-8_25

    [7]     Paliwal, P., & Renov, O. (2019). Gradient Boosting Censored Regression for Winning Price Prediction in Real-Time Bidding. In G. Li, J. Yang, J. Gama, J. Natwichai, & Y. Tong (Eds.), Database Systems for Advanced Applications (pp. 348–352). Springer International Publishing. https://doi.org/10.1007/978-3-030-18590-9_43

    [8]     Ji, M., & Park, H. (2019). Prediction Model of Optimal Bid Price Based on Keyword Auction Data Through Machine Learning Algorithms. In L. Barolli, F. Xhafa, N. Javaid, & T. Enokido (Eds.), Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 665–674). Springer International Publishing. https://doi.org/10.1007/978-3-319-93554-6_65

    [9]     Spentzouris, P., Koutsopoulos, I., Madsen, K. G., & Hansen, T. V. (2018). Advertiser Bidding Prediction and Optimization in Online Advertising. In L. Iliadis, I. Maglogiannis, & V. Plagianakos (Eds.), Artificial Intelligence Applications and Innovations (pp. 413–424). Springer International Publishing. https://doi.org/10.1007/978-3-319-92007-8_35

    [10] Chen, C. C., & Chung, M.-C. (2015). Predicting the success of group buying auctions via classification. Knowledge-Based Systems, 89, 627–640. https://doi.org/10.1016/j.knosys.2015.09.009

    [11] Bangcharoensap, P., Kobayashi, H., Shimizu, N., Yamauchi, S., & Murata, T. (2015). Two step graph-based semi-supervised Learning for Online Auction Fraud Detection. In A. Bifet, M. May, B. Zadrozny, R. Gavalda, D. Pedreschi, F. Bonchi, J. Cardoso, & M. Spiliopoulou (Eds.), Machine Learning and Knowledge Discovery in Databases (pp. 165–179). Springer International Publishing. https://doi.org/10.1007/978-3-319-23461-8_11

    [12] Online Auctions Dataset. (n.d.). [dataset]. Retrieved December 13, 2023, from https://www.kaggle.com/datasets/onlineauctions/online-auctions-dataset

    [13] Hassib, E. M., El-Desouky, A. I., El-Kenawy, E.-S. M., & El-Ghamrawy, S. M. (2019). An Imbalanced Big Data Mining Framework for Improving Optimization Algorithms Performance. IEEE Access, 7, 170774–170795. https://doi.org/10.1109/ACCESS.2019.2955983

    [14] Celestini, A., Me, G., & Mignone, M. (2016). Tor Marketplaces Exploratory Data Analysis: The Drugs Case. In H. Jahankhani, A. Carlile, D. Emm, A. Hosseinian-Far, G. Brown, G. Sexton, & A. Jamal (Eds.), Global Security, Safety and Sustainability—The Security Challenges of the Connected World (pp. 218–229). Springer International Publishing. https://doi.org/10.1007/978-3-319-51064-4_18

    [15] Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. (2020). Ant Lion Optimizer: Theory, Literature Review, and Application in Multi-layer Perceptron Neural Networks. In S. Mirjalili, J. Song Dong, & A. Lewis (Eds.), Nature-Inspired Optimizers: Theories, Literature Reviews and Applications (pp. 23–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-12127-3_3

    [16] Awad, M., & Khanna, R. (2015). Support Vector Regression. In M. Awad & R. Khanna (Eds.), Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (pp. 67–80). Apress. https://doi.org/10.1007/978-1-4302-5990-9_4

    [17] Alhussan, A. A., Khafaga, D. S., El-Kenawy, E.-S. M., Ibrahim, A., Eid, M. M., & Abdelhamid, A. A. (2022). Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars. IEEE Access, 10, 84188–84211. https://doi.org/10.1109/ACCESS.2022.3196660

    [18] Sharaff, A., & Gupta, H. (2019). Extra-Tree Classifier with Metaheuristics Approach for Email Classification. In S. K. Bhatia, S. Tiwari, K. K. Mishra, & M. C. Trivedi (Eds.), Advances in Computer Communication and Computational Sciences (pp. 189–197). Springer. https://doi.org/10.1007/978-981-13-6861-5_17

    [19] Bentéjac, C., CsörgÅ‘, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937–1967. https://doi.org/10.1007/s10462-020-09896-5

    [20] Khafaga, D., Alhussan, A., El-kenawy, E.-S., Takieldeen, A., Hassan, T., Hegazy, E., Abdel, E., Ibrahim, A., & Abdelhamid, A. (2022). Meta-heuristics for Feature Selection and Classification in Diagnostic Breast Cancer. Computers, Materials & Continua, 73(1), 749–765. https://doi.org/10.32604/cmc.2022.029605

    [21] Hu, J., & Min, J. (2018). Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognitive Neurodynamics, 12(4), 431–440. https://doi.org/10.1007/s11571-018-9485-1

    [22] Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics, 187(1), 95–112. https://doi.org/10.1016/j.jeconom.2015.02.006

    Cite This Article As :
    Mohamed, Ahmed. , A., Abdelaziz. , Ibrahim, Abdelhameed. , M., Marwa. , M., El-Sayed. A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices. Financial Technology and Innovation, vol. , no. , 2023, pp. 27-36. DOI: https://doi.org/10.54216/FinTech-I.020203
    Mohamed, A. A., A. Ibrahim, A. M., M. M., E. (2023). A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices. Financial Technology and Innovation, (), 27-36. DOI: https://doi.org/10.54216/FinTech-I.020203
    Mohamed, Ahmed. A., Abdelaziz. Ibrahim, Abdelhameed. M., Marwa. M., El-Sayed. A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices. Financial Technology and Innovation , no. (2023): 27-36. DOI: https://doi.org/10.54216/FinTech-I.020203
    Mohamed, A. , A., A. , Ibrahim, A. , M., M. , M., E. (2023) . A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices. Financial Technology and Innovation , () , 27-36 . DOI: https://doi.org/10.54216/FinTech-I.020203
    Mohamed A. , A. A. , Ibrahim A. , M. M. , M. E. [2023]. A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices. Financial Technology and Innovation. (): 27-36. DOI: https://doi.org/10.54216/FinTech-I.020203
    Mohamed, A. A., A. Ibrahim, A. M., M. M., E. "A Comprehensive Exploration of Machine Learning Models for Predicting Online Auction Prices," Financial Technology and Innovation, vol. , no. , pp. 27-36, 2023. DOI: https://doi.org/10.54216/FinTech-I.020203