Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 16 , Issue 1 , PP: 253-263, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables

María F. Molina 1 * , Secundino Marrero 2

  • 1 Technical University of Cotopaxi, Cotopaxi, Ecuador - (maria.molina@utc.edu.ec)
  • 2 Technical University of Cotopaxi, Cotopaxi, Ecuador - (secundino.marrero@utc.edu.ec)
  • Doi: https://doi.org/10.54216/FPA.160118

    Received: July 09, 2023 Revised: November 19, 2023 Accepted: May 21, 2024
    Abstract

    Agricultural systems, such as greenhouses, can be used to control environmental factors, such as temperature and humidity, to increase output by employing traditional automation techniques. The advancement of science has resulted in the utilization of mathematical models to understand the behavior of data by analyzing its variability. The objective of this project is to validate a method for controlling temperature and humidity in controlled experimental environments using artificial intelligence and Neutrosophy. The transfer functions obtained from temperature and humidity readings gathered via a SCADA system are utilized. Neutrosophic numbers are used to adjust the temperature and humidity values based on the experimental conditions of the greenhouse, indicating the optimal, important, and sensitive ranges. The control system being investigated employs NARMA-L2 neural networks that belong to the multilayer perception category. This facilitates efficient system administration and showcases outstanding performance in simulations conducted across several temperature and humidity scenarios. The observed errors consistently remain below 5% and any instances of exceeding this threshold are insignificant.

    Keywords :

    NARMA-L2, neutrosophy , nonlinear models , temperature , humidity.

    References

    [1]      Jararweh, Y., Fatima, S., Jarrah, M., & AlZu’bi, S. (2023). Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions. Computers and Electrical Engineering, 110, 108799.

    [2]      Haro Terán, L. F., Espinoza Castro, M. B., Rubio Benavides, S. E., & Villarreal Ger, M. G. (2023). Neutrosophic Multicriteria Method for the Evaluation of the Impact of Public Policy for Soil Conservation through Farmer Training. Neutrosophic Computing and Machine Learning, 29, 159-170..

    [3]      Wang, Z., Li, D., Gruda, N. S., Duan, Z., & Li, X. (2024). Fertilizer application rate and nutrient use efficiency in Chinese greenhouse vegetable production. Resources, Conservation and Recycling, 203, 107431.

    [4]     Hernán CH, Juan Pablo Peña A, Rosa Elvira Muñoz V, Eddinson OM, Julio FD. Revisión bibliográfica sobre desarrollo y validación de un sistema automatizado para invernaderos. Rev Agropecu Agroindustrial Angostura [Internet]. 2014 [citado el 6 de mayo de 2024];1(1):49–57.

    [5]   Durmanov, A., Saidaxmedova, N., Mamatkulov, M., Rakhimova, K., Askarov, N., Khamrayeva, S., ... & Kurbanova, K. (2023). Sustainable growth of greenhouses: investigating key enablers and impacts. Emerging Science Journal, 7(5), 1674-1690..

    [6]      del Felipe, M. R. C., Vázquez, M. L., & Bermello, J. L. P. (2021). Wireless Sensor Network Applied to Precision Agriculture: A Technical Case Study at the Technical University of Manabí. In Communication, Smart Technologies and Innovation for Society: Proceedings of CITIS 2021 (pp. 525-534). Singapore: Springer Singapore.

    [7]    Sharma, R., Kumari, P., & Sahare, H. (2024). Greenhouse Climate Control for Flower Regulation in Ornamental Crops. In Protected Cultivation (pp. 379-401). Apple Academic Press.

    [8]     Djibrilla, A. S. M., Rabani, A., Illyassou, K. M., Abdoulkader, A. H., & Aissetou, D. Y. (2024). Improving the sustainability and effectiveness of photovoltaic evaporative cooling greenhouse in the Sahel. Scientific Reports, 14(1), 11255.

    [9]      García-Mañas, F., Hägglund, T., Guzmán, J. L., Rodríguez, F., & Berenguel, M. (2024). A practical solution for multivariable control of temperature and humidity in greenhouses. European Journal of Control, 100967.

    [10]    Abdelhafeez, A., Mahmoud, H., & Aziz, A. S. (2023). Identify the most Productive Crop to Encourage Sustainable Farming Methods in Smart Farming using Neutrosophic Environment. Neutrosophic systems with applications, 6, 17-24.

    [11]  Ruiz, D. P., Flores, M. L., Silva, G. P., & Ibrahim, M. (2023). Single Valued Neutrosophic Sets Approach for Assessment Wind Power Plant. International Journal of Neutrosophic Science, 23(1), 205-216.

    [12]  Bolandnazar E, Sadrnia H, Rohani A, Marinello F, Taki M. Application of Artificial Intelligence for Modeling the Internal Environment Condition of Polyethylene Greenhouses. Agriculture. 2023;13(8).

    [13]  Zaguia, A. (2023). Smart greenhouse management system with cloud-based platform and IoT sensors. Spatial Information Research, 31(5), 559-571.

    [14]  Jiang, W., Jin, Y., Liu, G., Ju, Z., Arıcı, M., Li, D., & Guo, W. (2023). Net-zero energy optimization of solar greenhouses in severe cold climate using passive insulation and photovoltaic. Journal of Cleaner Production, 402, 136770.

    [15]  Vázquez, M. L., & Smarandache, F. (2024). A Neutrosophic Approach to Study Agnotology: A Case Study on Climate Change Beliefs. HyperSoft Set Methods in Engineering, 2, 1-8.

    [16]   Malquin, D. M. S., Andrango, M. A. C., & García, A. O. V. (2023). Neutrosophic Multicriteria Method for the Timely Detection of the Economic Impact of the Russia-Ukraine Conflict on Production Costs. Neutrosophic Computing and Machine Learning, 29, 83-97.

    [17]  Rashno E, Minaei-Bidgoli B, Guo Y. An effective clustering method based on data indeterminacy in neutrosophic set domain. Eng Appl Artif Intell [Internet]. 2020;89(103411):103411.

    [18]   Ullah A, Shabbir J, Alomair AM, Alomair MA. Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function. Axioms. 2023;12(9).

    [19]    Pukrittayakamee A, De Jesus O, Hagan MT. Smoothing the control action for NARMA-L2 controllers. En: The 2002 45th Midwest Symposium on Circuits and Systems, 2002 MWSCAS-2002. IEEE; 2003.

    [20]    Alaoui ME, Chahidi LO, Rougui M, Mechaqrane A, Allal S. Evaluation of CFD and machine learning methods on predicting greenhouse microclimate parameters with the assessment of seasonality impact on machine learning performance. Scientific African [Internet]. 2023;19(e01578):e01578.

    Cite This Article As :
    F., María. , Marrero, Secundino. Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables. Fusion: Practice and Applications, vol. , no. , 2024, pp. 253-263. DOI: https://doi.org/10.54216/FPA.160118
    F., M. Marrero, S. (2024). Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables. Fusion: Practice and Applications, (), 253-263. DOI: https://doi.org/10.54216/FPA.160118
    F., María. Marrero, Secundino. Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables. Fusion: Practice and Applications , no. (2024): 253-263. DOI: https://doi.org/10.54216/FPA.160118
    F., M. , Marrero, S. (2024) . Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables. Fusion: Practice and Applications , () , 253-263 . DOI: https://doi.org/10.54216/FPA.160118
    F. M. , Marrero S. [2024]. Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables. Fusion: Practice and Applications. (): 253-263. DOI: https://doi.org/10.54216/FPA.160118
    F., M. Marrero, S. "Climate Optimization in Greenhouses Using the NARMA-L2 Model: An Advanced Integration of Environmental Variables," Fusion: Practice and Applications, vol. , no. , pp. 253-263, 2024. DOI: https://doi.org/10.54216/FPA.160118