Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 11 , Issue 2 , PP: 48-61, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques

Hayder Mahmood Salman 1 * , Hasan Faleh Hamdan 2 , Raed Khalid 3 , Sanaa Al-Kikani 4

  • 1 Al-Turath University College, Baghdad, 10021, Iraq - (haider.mahmood@turath.edu.iq)
  • 2 Department of computer engineering techniques, Mazaya University College, Thi Qar, Iraq - (eti.hassan940@gmail.com)
  • 3 Department of medical instrument engineering techniques, Alfarahidi University, Baghdad, Iraq - (raed.khalid@alfarahidiuc.edu.iq)
  • 4 Department of Physical Education and Sport Science, Al Mustaqbal University College, 51001 Hilla, Babylon, Iraq - (Dr.Sanaa@uomus.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.110204

    Received: November 13, 2022 Accepted: March 23, 2023
    Abstract

    The emergence of low-cost individual sensing devices has facilitated the application of data fusion methods to yield insights useful for score-level, rank-level, or hybrid-level fusion. Intelligent tools for fusion processing, such as fuzzy methods and optimization algorithms, may be used to the deluge of raw data generated by these devices. The use of numerous sensors allows for multi-level/hybrid-level fusion, and the combination of several models for intelligent systems allows for fusion system design optimized for score improvement. Multimedia data fusion applications and machine learning methods can be used to accomplish data fusion in cloud settings. For older people in independent living conditions, a physical activity assessment framework (PAAF) that uses deep learning models for fusion to identify activity and evaluate progress based on the spectral domain of each window is needed. This study highlights the significance of data fusion in outlining the needs for IoT devices in networked computers for distant patient monitoring. In order to provide for the health of the elderly without compromising their comfort or freedom of choice, we need a seniors network based on the Internet of Things and wearable health technology. The sensors' functionality was investigated by analyzing data gathered from the environment and the organisms within it. The proposed PAAF-IoT architecture has many layers, each one connected to a different device, with the most important part being the integration of data from all of them to classify types of physical activity. Cloud services geographically close to the customer are used to process the resulting mountain of data, reducing end-to-end delay and facilitating prompt responses from healthcare professionals. Data fusion in healthcare and remote patient monitoring are demonstrated through the deployment of an app that allows doctors to remotely administer prescriptions and maintain track of patients' medical histories.

    Keywords :

    Elder Person , Free-Living , IoT , Physical Activity , Fusion data , Fusion-Based Techniques

    References

    [1]  Qi, J., Yang, P., Waraich, A., Deng, Z., Zhao, Y., & Yang, Y. (2018). Examining sensor-based physical activity  recognition  and  monitoring  for  healthcare  using  Internet  of  Th ings:  A  systematic review. Journal of biomedical informatics, 87, 138-153.

    [2]  Shams  N.  Abdul-wahab,  Mostafa  Abdulghafoor  Mohammed,  &  Omar  A.  Hammood.  (2021). Theoretical  Background  of  steganography.  Mesopotamian  Journal  of  CyberSecurity,  2021,  22–32. https://doi.org/10.58496/MJCS/2021/005

    [3]  Tun, S. Y. Y., Madanian, S., & Mirza, F. (2021). Internet of things (IoT) applications for elderly care: a reflective review. Aging clinical and experimental research, 33(4), 855-867.

    [4]  Jaber, M.M., Yussof, S., Ali, M.H., Abd, S.K., Jassim, M.M., Alkhayyat , A. and Mubarak, H., 2022. PIRAP:  PPDA-FAF:  Maintaining  Data  Security  and  Privacy  in  Green  IoT-Based Agriculture. International Journal of Cooperative Information Systems.

    [5]  Naeemullah Khan, Ismael Khaleel, & Elika Daghighi. (2021). Improved feature selection method for features reduction in intrusion detection systems . Mesopotamian Journal of CyberSecurity, 2021, 9 –15. https://doi.org/10.58496/MJCS/2021/003

    [6]  Qian, K., Zhang, Z., Yamamoto, Y., & Schuller, B. W. (2021). Artificial intelligence internet of things for the elderly: from assisted living to healthcare monitoring.  IEEE Signal Processing Magazine, 38(4), 78-88.

    [7]  Zhong,  C.  L.  (2020).  Internet  of  things  sensors  assisted  physical  activity  recognition  and  health monitoring of college students—measurement, 159, 107774.

    [8]  Hosseinzadeh, M., Koohpayehzadeh, J., Ghafour, M. Y., Ahmed, A. M., Asghari, P., Souri, A., ... & Rezapour,  A.  (2020).  An  elderly  health  monitoring  system  based  on  biological  and  behavioral indicators in the internet of things. Journal of Ambient Intelligence and Humanized Computing, 1-11.

    [9]  Yacchirema, D. C., Sarabia-Jácome, D., Palau, C. E., & Esteve, M. (2018). A smart system for sleep monitoring by integrating IoT with big data analytics. IEEE Access, 6, 35988-36001.

    [10]  Huang, H., Li, X., Liu, S., Hu, S., & Sun, Y. (2018). TriboMotion: A self-powered triboelectric motion sensor  in  wearable  Internet  of  Things  for  human  activity  recognition  and  energy  harvesting. IEEE Internet of Things Journal, 5(6), 4441-4453.

    [11]  Rahman,  M.  A.,  &  Hossain,  M.  S.  (2019).  A  cloud-based  virtual  caregiver  for  elderly  people  in  a cyber-physical IoT system. Cluster Computing, 22(1), 2317-2330.

    [12]  Alsudani, M.Q., Jaber, M.M., Ali, M.H., Abd, S.K., Alkhayyat, A., Kareem, Z.H. and Mohhan, A.R., 2023.  Smart  logistics  with  IoT-based  enterprise  management  system  using  global manufacturing. Journal of Combinatorial Optimization, 45(2), p.57.

    [13]  Boukhennoufa, I., Amira, A., Bensaali, F., & Esfahani, S. S. (2020). A novel gateway-based solution for remote elderly monitoring. Journal of Biomedical Informatics, 109, 103521.

    [14]  Ali, M.H., Al-Azzawi, W.K., Jaber, M., Abd, S.K., Alkhayyat, A. and Rasool, Z.I., 2022. Improving coal  mine  safety  with  internet  of  things  (IoT)  based  Dynamic  Sensor  Information  Control System. Physics and Chemistry of the Earth, Parts A/B/C, 128, p.103225.

    [15]  Vargemidis, D., Gerling, K., Spiel, K., Abeele, V. V., & Geurts, L. (2020).  Wearable physical activity tracking  systems  for  older  adults—a  systematic  review. ACM  Transactions  on  Computing  for Healthcare, 1(4), 1-37.

    [16]  Kang,  S.  (2020).  A  study  on  smart  homecare  for  daily  living  ability  and  safety  management  of  the elderly. In Information Science and Applications (pp. 707-710). Springer, Singapore.

    [17]  Wan, J., Al-awlaqi, M. A., Li, M., O'Grady, M., Gu, X., Wang, J., & Cao, N. (2018). Wearable IoT enabled  a  real-time  health  monitoring  system. EURASIP  Journal  on  Wireless  Communications  andNetworking, 2018(1), 1-10.

    [18]  Hung, L. P., Chao, Y. H., & Chen, C. L. (2019). A Hybrid Key Item Locating Method to Assist Elderly Daily Life Using Internet of Things. Mobile Networks and Applications, 24(3), 786-795.

    [19]  Forkan, A. R. M., Branch, P., Jayaraman, P. P., & Ferretto, A. (2019). An Internet -of-Things solution to  assist  independent  living  and  social  connectedness  in  the  elderly. ACM  Transactions  on  Social Computing, 2(4), 1-24.

    [20]  Kang, S. (2018). A Study on Programs Applying the Internet of Things (IoT) for Prevention of Falls in the Elderly. In IT Convergence and Security 2017 (pp. 49-53). Springer, Singapore.

    [21]  Mardini,  M.  T.,  Iraqi,  Y.,  &  Agoulmine,  N.  (2019).  A  survey  of  healthcare  monitoring  systems  for chronically ill patients and elderly. Journal of medical systems, 43(3), 50.

    [22]  Al-Khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., & Waraich, A. (2019). Remote  health  monitoring  of  the  elderly  through  wearable  sensors. Multimedia  Tools  and Applications, 78(17), 24681-24706.

    [23]  Mozaffari, N., Rezazadeh, J., Farahbakhsh, R., Yazdani, S., & Sandrasegaran, K. (2019). Practical fall detection based on IoT technologies: A survey. Internet of things, 8, 100124.

    [24]  Malwade, S., Abdul, S. S., Uddin, M., Nursetyo,  A. A., Fernandez-Luque, L., Zhu, X. K., ... & Li, Y. C.  J.  (2018).  Mobile  and  wearable  technologies  in  healthcare  for  the  ageing  population. Computer methods and programs in biomedicine, 161, 233-237.

    [25]  Praveen, S.P., Ali, M.H., Jaber, M.M., Buddhi, D., Prakash, C., Rani, D.R. and Thirugnanam, T., 2022. IOT-Enabled  Healthcare  Data  Analysis  in  Virtual  Hospital  Systems  Using  Industry  4.0  Smart Manufacturing. International Journal of Pattern Recognition and Artificial Intelligence .

    Cite This Article As :
    Mahmood, Hayder. , Faleh, Hasan. , Khalid, Raed. , Al-Kikani, Sanaa. Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques. Fusion: Practice and Applications, vol. , no. , 2023, pp. 48-61. DOI: https://doi.org/10.54216/FPA.110204
    Mahmood, H. Faleh, H. Khalid, R. Al-Kikani, S. (2023). Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques. Fusion: Practice and Applications, (), 48-61. DOI: https://doi.org/10.54216/FPA.110204
    Mahmood, Hayder. Faleh, Hasan. Khalid, Raed. Al-Kikani, Sanaa. Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques. Fusion: Practice and Applications , no. (2023): 48-61. DOI: https://doi.org/10.54216/FPA.110204
    Mahmood, H. , Faleh, H. , Khalid, R. , Al-Kikani, S. (2023) . Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques. Fusion: Practice and Applications , () , 48-61 . DOI: https://doi.org/10.54216/FPA.110204
    Mahmood H. , Faleh H. , Khalid R. , Al-Kikani S. [2023]. Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques. Fusion: Practice and Applications. (): 48-61. DOI: https://doi.org/10.54216/FPA.110204
    Mahmood, H. Faleh, H. Khalid, R. Al-Kikani, S. "Physical Activity Monitoring for Older Adults through IoT and Wearable Devices: Leveraging Data Fusion Techniques," Fusion: Practice and Applications, vol. , no. , pp. 48-61, 2023. DOI: https://doi.org/10.54216/FPA.110204