International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 12 , Issue 1 , PP: 29-38, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Vague Incidence Graph

S. Satham Hussain 1 , R. Jahir Hussain 2 , M. Vignesh Babu 3

  • 1 PG and Department of Mathematics, Jamal Mohamed College, Trichy, Tamil Nadu, India - (sathamhussain5592@gmail.com)
  • 2 PG and Department of Mathematics, Jamal Mohamed College, Trichy, Tamil Nadu, India - (hssn_jhr@yahoo.com)
  • 3 Independent Researcher, Uthamapalayam, Theni, India - ( vigneshbabu5592@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.120104

    Received: July 09, 2020 Accepted: Octobre 14, 2020
    Abstract

     

    Vague sets gives more intuitive graphical notation of vague data, that devotes better analysis in information relationships, incompleteness and similarity measures. Neutrosophic graphs are used as a mathematical tool to kept an imprecise and unspecified information. In this paper, the neutrosophic vague incidence graphs are introduced. The edge-connectivity, vertex-connectivity and pair-connectivity in neutrosophic vague incidence graphs are established. The given results are illustrated with suitable example.

     

    Keywords :

      ,

    Neutrosophic vague incidence graph, Edge-connectivity, Vertex-connectivity and Pair-connectivity

      ,

    References

    [1]   Ajay, D. and Chellamani, P., “Fuzzy magic labelling of Neutrosophic path and star graph”, Advances in Mathematics: Scientific Journal, Vol 9, No. 8, pp. 6059–6070, 2020.

     

    [2]   Ajay, D., Manivel, M., and Aldring, J.,“ Neutrosophic Fuzzy SAW Method and It’s Application”. The International Journal of Analytical and Experimental Modal Analysis, Vol 11, No. 8, pp. 881-887, 2019.

     

    [3]   Ajay, D. and Aldring, J., “A Decision-Making Technique Based on Similarity Measure and Entropy of Bipolar Neutrosophic Sets”, The International Journal of Analytical and Experimental Modal Analysis, Vol 11, No. 9, pp. 520-529, 2019.

     

    [4]   Ajay, D., Broumi, S. and Aldring, J., “An MCDM Method under Neutrosophic Cubic Fuzzy Sets with Geometric Bonferroni Mean Operator”, Neutrosophic Sets and Systems, Vol 32, No. 1, pp. 1-13. 2020. DOI: 10.5281/zenodo.3723621.

     

    [5]   Ajay, D., Aldring, J., Abirami, S. and Jeni Seles Martina, D., “A SVTrN-number approach of multiobjective optimisation on the basis of simple ratio analysis based on MCDM method”. International Journal of Neutrosophic Science (IJNS), Vol 5, No. 1, pp. 16-28, 2020.

     

    [6]   Akram, M. and Shahzadi, G., “Operations on single-valued neutrosophic graphs, Journal of Uncertain Systems, 11(1) (2017), 1-26.

     

    [7]   Akram, M., Sayed, S. and Smarandache, F., “Neutrosophic incidence graphs with application”, Axioms, Vol 7, No. 3, pp. 1-47, 2018

     

    [8]   Al-Quran, A. and Hassan, N., “Neutrosophic vague soft expert set theory, Journal of Intelligent & Fuzzy Systems, Vol 30, No. 6, pp. 3691-3702, 2016

     

    [9]   Al-Tahan, M. and Davvaz, B., “On Single Valued Neutrosophic Sets and Neutrosophic N-Structures: Applications on Algebraic Atructures (Hyperstructures)”, International Journal of Neutrosophic Science (IJNS), Vol 3, No. 2, pp. 108-117, 2020.

     

    [10]Al- Tahan, M., “Some Results on Single Valued Neutrosophic (Weak) Polygroups”, International Journal of Neutrosophic Science (IJNS), Vol 2, No. 1, pp. 38-46, 2020

     

    [11]Alkhazaleh, S., “Neutrosophic vague set theory”, Critical Review, Vol 10, pp. 29-39, 2015.

     

    [12]Borzooei, A. R. and Rashmanlou, H., “Degree of vertices in vague graphs”, Journal of Applied Mathematics and Informatics, Vol 33, pp. 545-557, 2015.

     

    [13]Borzooei, A. R. and Rashmanlou, H., “Domination in vague graphs and its applications”, Journal of Intelligent & Fuzzy Systems, Vol 29, pp. 1933-1940, 2015.

     

    [14]Borzooei, A. R., Rashmanlou, H., Samanta, S. and Pal, M., “Regularity of vague graphs”, Journal of Intelligent & Fuzzy Systems, Vol 30, pp. 3681-3689, 2016.

     

    [15]Broumi, S. and Smarandache, F., “Intuitionistic neutrosophic soft set”, Journal of Information and Computer Science, Vol 8, No. 2, pp. 130-140, 2013.

     

    [16]Broumi, S., Smarandache, F., Talea, M. and Bakali., “Single-valued neutrosophic graphs: Degree, Order and Size”, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016.

     

    [17]Broumi, S., Mohamed, T., Assia, B. and Smarandache, F., “Single-valued neutrosophic graphs”, The Journal of New Theory, Vol 2016, No. 10, pp. 861-101, 2016.

     

    [18]Darabian, E., Borzooei, R. A., Rashmanlou, H. and Azadi, M., “New concepts of regular and (highly) irregular vague graphs with applications”, Fuzzy Information and Engineering, Vol 9, No. 2, pp. 161-179, 2017.

     

    [19] Deli, I. and Broumi, S., “Neutrosophic soft relations and some properties”, Annals of Fuzzy Mathematics and Informatics, Vol 9, No. 1, pp. 169-182, 2014.

     

    [20]Deli, I. and S¸ubas¸, Y., “Some weighted geometric operators with SVTrN-numbers and their application to multi-criteria decision-making problems”, Journal of Intelligent & Fuzzy Systems, Vol 32, No. 1, pp. 291-301, 2017

     

    [21]Deli, I. and Ozt ¨ urk, E. K., “Two Centroid Point for SVTN-Numbers and SVTrN-Numbers: SVN-MADM ¨ Method”, In Neutrosophic Graph Theory and Algorithms, IGI Global, pp. 279-307, 2020.

     

    [22]Dhavaseelan, R., Vikramaprasad, R. and Krishnaraj, V., “Certain types of neutrosophic graphs”, International Journal of Mathematical Sciences and Applications, Vol 5, No. 2, pp. 333-339, (2015).

     

    [23]Dhavaseelan, R., Jafari, S., Farahani M. R and Broumi S, “On single-valued co-neutrosophic graphs”, Neutrosophic Sets and Systems, An International Book Series in Information Science and Engineering, Vol 22, 2018.

     

    [24]Molodtsov D, “Soft set theory-first results”, Computers and Mathematics with Applications, Vol 37, No. 2, pp. 19-31, 1999.

     

    [25]Muhiuddin, G. and Al-roqi, A. M., “Cubic soft sets with applications in BCK/BCI-algebras”, Annals of Fuzzy Mathematics and Informatics, Vol 8, No. 2, pp. 291-304, 2014.

     

    [26]Muhiuddin, G., “Neutrosophic Sub semi-groups”, Annals of Communications in Mathematics, 1(1), (2018).

     

    [27]Mordeson, J.N., “Fuzzy line graphs”, Pattern Recognition Letters, Vol 14, pp. 381-384, 1993.

     

    [28]Hussain, S. S., Hussain, R. J. and Muhiuddin, G., “Neutrosophic Vague Line Graphs”, Neutrosophic Sets and Systems, Vol 36, pp. 121-130, 2020.

     

    [29]Hussain, S. S., Hussain, R. J., Jun, Y. B. and Smarandache, F., “Neutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphs”, Neutrosophic Sets and Systems, Vol 28, pp. 69-86, 2020.

     

    [30]Hussain, S. S., Hussain, R. J. and Smarandache, F., “On neutrosophic vague graphs”, Neutrosophic Sets and Systems, Vol 28, pp. 245-258, 2019.

     

    [31]Hussain, S. S., Broumi, S., Jun, Y. B. and Durga, N., “Intuitionistic bipolar neutrosophic set and its application to intuitionistic bipolar neutrosophic graphs”, Annals of Communication in Mathematics, Vol 2, No. 2, pp. 121-140, 2019.

     

    [32]Hussain, S. S., Hussain, R. J. and Smarandache, F., “Domination Number in Neutrosophic Soft Graphs”, Neutrosophic Sets and Systems, Vol 28, No. 1, pp. 228-244, 2019.

     

    [33]Hussain, R. J., Hussain, S. S., Sahoo, S., Pal, M. and Pal, A., “Domination and Product Domination in Intuitionistic Fuzzy Soft Graphs”, International Journal of Advanced Intelligence Paradigms, 2020 (In Press), DOI:10.1504/IJAIP.2019.10022975.

     

    [34]Smarandache, F., “A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic”, Rehoboth: American Research Press, 1999.

     

    [35]Smarandache, F., “Neutrosophy, Neutrosophic Probability, Set, and Logic”, Amer../ Res. Press, Rehoboth, USA, 105 pages, 1998 http://fs.gallup.unm.edu/eBookneutrosophics4.pdf(4th edition).

     

    [36]Smarandache, F., “Neutrosophic Graphs, in his book Symbolic Neutrosophic Theory”, Europa, Nova, 2015.

     

    [37]Smarandache. F., “Neutro-Algebra is a Generalization of Partial Algebra”, International Journal of Neutrosophic Science (IJNS), Vol 2, No. 1, pp. 8-17, 2020.

     

    [38]Smarandache, F., and Abobala, M, “n-Refined Neutrosophic Vector Spaces”, International Journal of Neutrosophic Science (IJNS), Vol 7, No. 1, pp. 47-54, 2020

     

    [39]Smarandache, F., “Neutrosophic set, a generalisation of the intuitionistic fuzzy sets”, International Journal of Pure and Applied Mathematics, Vol 24, pp. 289-297, 2010.

     

    [40]Wang, H., Smarandache, F., Zhang, Y. and Sunderraman, R., “Single-valued neutrosophic sets”, Multispace and Multistructure, Vol 4, pp. 410-413, 2010.

     

    [41]Gau, W. L. and Buehrer, D. J.,“Vague sets”, IEEE Transactions on Systems. Man and Cybernetics, Vol 23, No. 2, pp. 610-614, 1993.

     

    Cite This Article As :
    Satham, S.. , Jahir, R.. , Vignesh, M.. Neutrosophic Vague Incidence Graph. International Journal of Neutrosophic Science, vol. , no. , 2020, pp. 29-38. DOI: https://doi.org/10.54216/IJNS.120104
    Satham, S. Jahir, R. Vignesh, M. (2020). Neutrosophic Vague Incidence Graph. International Journal of Neutrosophic Science, (), 29-38. DOI: https://doi.org/10.54216/IJNS.120104
    Satham, S.. Jahir, R.. Vignesh, M.. Neutrosophic Vague Incidence Graph. International Journal of Neutrosophic Science , no. (2020): 29-38. DOI: https://doi.org/10.54216/IJNS.120104
    Satham, S. , Jahir, R. , Vignesh, M. (2020) . Neutrosophic Vague Incidence Graph. International Journal of Neutrosophic Science , () , 29-38 . DOI: https://doi.org/10.54216/IJNS.120104
    Satham S. , Jahir R. , Vignesh M. [2020]. Neutrosophic Vague Incidence Graph. International Journal of Neutrosophic Science. (): 29-38. DOI: https://doi.org/10.54216/IJNS.120104
    Satham, S. Jahir, R. Vignesh, M. "Neutrosophic Vague Incidence Graph," International Journal of Neutrosophic Science, vol. , no. , pp. 29-38, 2020. DOI: https://doi.org/10.54216/IJNS.120104