International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 1 , PP: 234-245, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain

Nur Athirah Hani Senin 1 * , Yuzaimi Yunus 2 , Nur Hazwani Aqilah Abdul Wahid 3 * , Rashidah Omar 4

  • 1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Cawangan Melaka, Kampus Bandaraya Melaka, 75350 Melaka, Malaysia - (athirahhani1301@gmail.com)
  • 2 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Cawangan Melaka, Kampus Jasin, 77300 Melaka, Malaysia - (yuzaimi@uitm.edu.my)
  • 3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia - (hazwaniaqilah@uitm.edu.my)
  • 4 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Cawangan Sabah, 88450 Kota Kinabalu, Malaysia - (rashidaho@uitm.edu.my)
  • Doi: https://doi.org/10.54216/IJNS.270121

    Received: February 27, 2025 Revised: May 29, 2025 Accepted: July 10, 2025
    Abstract

    This paper introduces the class Mε,4L, defined through a convex combination of starlike and convex functions associated with a four-cusped epicycloid domain, where the parameter satisfies 0 ≤ ε ≤ 1. Unlike earlier studies that focused on circular or conic domains, this work extends the geometric framework to epicycloidal domains. Within this framework, sharp estimates for the first coefficients are obtained, together with the Fekete-Szeg¨o inequality and the second Hankel determinant evaluations. These findings extend several classical results for starlike and convex functions and offer new perspectives on analytic function theory related to epicycloidal domains.

    Keywords :

    &epsilon , -convex functions , epicycloid domain , univalent functions , coefficient bounds , Fekete&ndash , Szeg¨ , o inequality , Hankel determinant

    References

    [1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., vol. 26, no. 1, pp. 1–11, 2003.

     

    [2] E. E. Ali, H. M. Srivastava, W. Y. Kota, R. M. El-Ashwah and A. M. Albalah, The second Hankel determinant and the Fekete–Szego functional for a subclass of analytic functions by using the ¨ q-Sal˘ agean ˘ derivative operator, Alex. Eng. J., vol. 116, no. 1, pp. 141–146, 2025.

     

    [3] P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.

     

    [4] I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., vol. 435, no. 1, pp. 369–379, 2016.

     

    [5] M. Fekete and G. Szego, Eine Bemerkung ˝ uber ungerade schlichte Funktionen, J. Lond. Math. Soc., vol. ¨ 1, no. 2, pp. 85–89, 1933.

     

    [6] S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, Proc. Int. Conf. Recent Adv. Pure Appl. Math., Springer, Singapore, pp. 173–184, 2018.

     

    [7] S. Gandhi, P. Gupta, S. Nagpal and V. Ravichandran, Starlike functions associated with an epicycloid, Hacet. J. Math. Stat., vol. 51, no. 6, pp. 1637–1660, 2022.

     

    [8] B. Khan, I. Aldawish, S. Araci and M. G. Khan, Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., vol. 6, no. 5, pp. 227, 2022.

     

    [9] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., vol. 85, no. 2, pp. 225–230, 1982.

     

    [10] A. Lupas, New applications of fuzzy set concept in the geometric theory of analytic functions, Axioms, ˘ vol. 12, no. 5, pp. 494, 2023.

     

    [11] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Anal., Int. Press, New York, pp. 157–169, 1994.

     

    [12] S. S. Miller, P. T. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., vol. 37, no. 2, pp. 553–554, 1973.

     

    [13] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., vol. 28, no. 2, pp. 157–172, 1981.

     

    [14] P. T. Mocanu, Une propriet´ e de convexit ´ e g ´ en´ eralis ´ ee dans la th ´ eorie de la repr ´ esentation conforme, ´ Mathematica (Cluj), vol. 11, no. 34, pp. 127–133, 1969.

     

    [15] S. S. Miller and P. T. Mocanu, Differential subordinations. Theory and Applications, Marcel Dekker, New York, 2000.

     

    [16] G. I. Oros and G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., vol. 19, no. 1, pp. 97–103, 2011.

     

     [17] G. I. Oros and G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, vol. 3, no. 30, pp. 55–64, 2012.

     

    [18] G. I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turk. J. Math., vol. 46, no. 4, pp. 1478–1491, 2022.

     

    [19] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., vol. 1, no. 1, pp. 111–122, 1966.

     

    [20] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, vol. 14, no. 1, pp. 108–112, 1967.

     

    [21] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck ¨ and Ruprecht, Gottingen, 1975. ¨

     

    [22] D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae CurieSkłodowska Sect. A, vol. 35, no. 2, pp. 125–143, 1984.

     

    [23] S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad and A. M. Albalahi, Inclusion results for the class of fuzzy α-convex functions, AIMS Math., vol. 8, no. 1, pp. 1375–1383, 2023.

     

    [24] G. Shanmugam, B. A. Stephen and K. O. Babalola, Third Hankel determinant for alpha-starlike functions, Gulf J. Math., vol. 2, no. 2, pp. 75–82, 2014.

     

    [25] Y. J. Sim, D. K. Thomas and P. Zaprawa, The second Hankel determinant for starlike and convex functions of order alpha, Complex Var. Elliptic Equ., vol. 67, no. 10, pp. 2423–2443, 2021.

     

    [26] L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal and S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., vol. 5, no. 4, pp. 216, 2021.

     

    [27] L. Shi, M. Arif, K. Ullah, N. Alreshidi and M. Shutaywi, On sharp estimate of third Hankel determinant for a subclass of starlike functions, Fractal Fract., vol. 6, no. 8, pp. 422, 2022.

     

    [28] P. I. Sizhuk and V. V. E. Chernikov, Coefficients of α-convex functions of order β, Math. Notes Acad. Sci. USSR, vol. 24, no. 6, pp. 863–867, 1978.

     

    [29] J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lithuanian ´ Math. J., vol. 58, no. 2, pp. 212–218, 2018.

     

    [30] N. Verma and S. Sivaprasad Kumar, On sharp bound of the third Hankel determinant for functions in S(α), Math. Methods Appl. Sci., vol. 48, no. 8, pp. 13155–13163, 2025.

    Cite This Article As :
    Athirah, Nur. , Yunus, Yuzaimi. , Hazwani, Nur. , Omar, Rashidah. On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 234-245. DOI: https://doi.org/10.54216/IJNS.270121
    Athirah, N. Yunus, Y. Hazwani, N. Omar, R. (2026). On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain. International Journal of Neutrosophic Science, (), 234-245. DOI: https://doi.org/10.54216/IJNS.270121
    Athirah, Nur. Yunus, Yuzaimi. Hazwani, Nur. Omar, Rashidah. On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain. International Journal of Neutrosophic Science , no. (2026): 234-245. DOI: https://doi.org/10.54216/IJNS.270121
    Athirah, N. , Yunus, Y. , Hazwani, N. , Omar, R. (2026) . On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain. International Journal of Neutrosophic Science , () , 234-245 . DOI: https://doi.org/10.54216/IJNS.270121
    Athirah N. , Yunus Y. , Hazwani N. , Omar R. [2026]. On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain. International Journal of Neutrosophic Science. (): 234-245. DOI: https://doi.org/10.54216/IJNS.270121
    Athirah, N. Yunus, Y. Hazwani, N. Omar, R. "On Convex Combinations of Starlike and Convex Functions Associated with the Epicycloid Domain," International Journal of Neutrosophic Science, vol. , no. , pp. 234-245, 2026. DOI: https://doi.org/10.54216/IJNS.270121