International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 320-340, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method

Guelfen hanane 1 *

  • 1 Department of Mathematics, Institute of Science. University Center of Barika, Algeria - (hanane.guelfen@cu-barika.dz)
  • Doi: https://doi.org/10.54216/IJNS.270227

    Received: March 24, 2025 Revised: June 09, 2025 Accepted: July 28, 2025
    Abstract

    Our study addresses the intuitionistic fuzzy system of linear Volterra-integro-differential equations of the second kind. Intuitionistic fuzzy General Transform (I-F-G-transform) method has been used to find the exact solution of these systems. We present two numerical examples for illustrating the applicability of the Intuitionistic fuzzy General integral transform method.

    Keywords :

    Intuitionistic fuzzy number , Generalized Hukuhara differentiability , Intuitionistic fuzzy General integral transform , Parametric form , Volterra integral equation , Intuitionistic Fuzzy volterra Integro-differential Equation

    References

    [1] K. S. Aboodh. (2013). The New Integral Transform Aboodh Transform, Global Journal of pure and Applied Mathematics, 9(1), 35-43.

     

    [2] S. A. P. Ahmadi, H. Hosseinzadeh, A. Y. Cherati. (2019). A New Integral Transform for Solving Higher Order Linear Ordinary Differential Equations, Nonlinear Dyn Syst Theory, 19(2), 243-52.

     

    [3] K.T. Atanassov. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3.

     

    [4] B. Bede, I. J. Rudas, A. L. Bencsik. (2007). First order linear fuzzy differential equations under generalized di6erentiability, Information Sciences, 177( 7), 1648-1662. https://doi.org/10.1016/j.ins.2006.08.021

     

    [5] S. S. L. Chang, L. Zadeh. (1972). On fuzzy mapping and control, IEEE Trans. Systems Man Cybernet, 2, 30-34. https://doi.org/10.1109/TSMC.1972.5408553

     

    [6] H. Eltayeb, A. Kiliman, and B. Fisher. (2010). A new integral transform and associated distributions, Integral Transforms Special Funct. 21(5), 367-379.

     

    [7] T. M. Elzaki. (2011). The new integral transform Elzaki Transform. Global Journal of Pure and Applied Mathematics, 7(1), 57-64.

     

    [8] R. Ettoussi, S. Melliani, M. Elomari and L. S. Chadli. (2015). Solution of Intuitionistic Fuzzy Differential Equations by successive approximation method, Notes on Intuitionistic Fuzzy Sets, 21(2), 51-62.

     

    [9] P. Grzegorzewski. (2003). The hamming distance between intuitionistic fuzzy sets, Proceedings of the 10th IFSA World Congress, Istanbul, Turkey, 35-38.

     

    [10] H. Jafari. (2021). A new general integral transform for solving integral equations, Journal of Advanced Research, 32, 133-138. https://doi.org/10.1016/j.jare.2020.08.016

     

    [11] H. Kamal. (2016). A. Sedeeg, The new integral transform Kamal transform. Adv Theoret Appl Mathe, 11(4), 451-8.

     

    [12] M. Matloka. (1987). On fuzzy integrals, 2nd Polish Symp.on Interval. Politechnika Poznansk, 167-170.

     

    [13] M. Mohand, A. Mahgoub. (2017). The new integral transform Mohand transfrom, Adv. Theor. Appl. Math, 12(2), 113–120.

     

    [14] M. Mohand, M. Abdelrahim. (2019). The new integral transform Sawi Transform, Adv Theoretical Appl Math, 14(1), 81–87.

     

    [15] S. Melliani, M. Elomari, L. S. Chadli and R. Ettoussi. (2015). Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43-53.

     

    [16] V. Nirmala, V. Parimala, P. Rajarajeswari. (2015). Modified Euler Method for Finding Numerical Solution of Intuitionistic Fuzzy Differential Equation under Generalised Differentiability Concept, International Journal of Applied Engineering Research, 10(72), 40-45.

     

    [17] J.Y. Park, Y.C. Kwan, J.V. Jeong. (1995). Existence of solutions of fuzzy integral equations in Banach spaces, Fuzzy Sets and System, 72 (3), 373-378. https://doi.org/10.1016/0165- 0114(94)00296-J

     

    [18] K. Shah , M. Junaid , N. Ali. (2015). Extraction of laplace, sumudu, fourier and mellin transform from the natural transform. Journal of Applied Environmental and Biological Sciences, 5(9), 108-115.

     

    [19] L.A. Zadeh. (1965). Fuzzy sets, Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019- 9958(65)90241-X.

    Cite This Article As :
    hanane, Guelfen. Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 320-340. DOI: https://doi.org/10.54216/IJNS.270227
    hanane, G. (2026). Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method. International Journal of Neutrosophic Science, (), 320-340. DOI: https://doi.org/10.54216/IJNS.270227
    hanane, Guelfen. Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method. International Journal of Neutrosophic Science , no. (2026): 320-340. DOI: https://doi.org/10.54216/IJNS.270227
    hanane, G. (2026) . Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method. International Journal of Neutrosophic Science , () , 320-340 . DOI: https://doi.org/10.54216/IJNS.270227
    hanane G. [2026]. Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method. International Journal of Neutrosophic Science. (): 320-340. DOI: https://doi.org/10.54216/IJNS.270227
    hanane, G. "Solution of Intuitionistic Fuzzy System of Linear Volterra Integro-differential Equations by a Novel Hybrid Method," International Journal of Neutrosophic Science, vol. , no. , pp. 320-340, 2026. DOI: https://doi.org/10.54216/IJNS.270227