International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 262-274, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy

Sumalatha S. 1 * , Rajeswari 2

  • 1 Research Scholar, Acharya Institute of Technology, Visvesvaraya Technological University, India - (sumalatha.disha@gmail.com)
  • 2 Professor and Head, Acharya Institute of Technology, Visvesvaraya Technological University, India - (rajeswari@acharya.ac.in)
  • Doi: https://doi.org/10.54216/IJNS.270222

    Received: February 21, 2025 Revised: May 29, 2025 Accepted: July 10, 2025
    Abstract

    Video codecs based on lossy compression techniques take advantage of removing redundant data in spatial and frequency domains. The various modes of intra- and inter-predictions help to reduce the redundant information in the spatial domain in standard video codecs like AVC, HEVC, and VVC. Further, the removal of redundant information in the frequency domain is achieved by adaptive quantization of transformed frames obtained after DCT-II or DST transformation techniques. In traditional video codec standards, adaptive quantization matrices are derived using the Human Visual System (HVS) model and display resolution parameters, which adjust the quantization step size to preserve perceptually significant pixel information in transformed blocks. The Neutrosophic (NS)-based approach introduces a more refined mechanism for generating the quantization matrix, utilizing Neutrosophic set membership values (true, indeterminate, and false) assigned to each region or frequency component of the transformed block. These values reflect the certainty of pixel relevance, enabling a more adaptive, perceptually driven quantization process. The proposed method incorporates NS logic in combination with the Human Visual System (HVS) model and display resolution parameters. By blending these factors, the quantization step size is optimally tuned to enhance visual quality. The HLS implementation of the transformation and quantization technique suitable for video codec acceleration using the OpenCL framework is adopted in our work. The design was implemented and tested on the Xilinx ZCU-104 board using a standard test sequence from the JCTVC and UVG datasets of various resolutions and diversified content. The testing showed an optimized resource utilization of 60.36%, with notable metrics indicating perceptually good results. The objective metrics showed an improvement of 3.77% in PSNR and 1.83% in SSIM compared to standard HVS-based quantization.

    Keywords :

    Discrete Cosine Transformation , Human Visual System , Vitis HLS , Neutrosopic matrices , Adaptive Quantization , Structural Similarity Index Metric

    References

    [1]       K. Misra, A. Segall, and F. Bossen, "Tools for Video Coding Beyond HEVC: Flexible Partitioning, Motion Vector Coding, Luma Adaptive Quantization, and Improved Deblocking," IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1361–1373, May 2020, doi: 10.1109/TCSVT.2019.2945473.

     

    [2]       Y.-W. Huang et al., "Block Partitioning Structure in the VVC Standard," IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 10, pp. 3818–3833, Oct. 2021, doi: 10.1109/TCSVT.2021.3088134.

     

    [3]       Ghanbari Talouki, A. Koochari, and S. A. Edalatpanah, "Applications of Neutrosophic Logic in Image Processing: A Survey," J. Electr. Comput. Eng. Innov. (JECEI), vol. 10, no. 1, pp. 243–258, Jan. 2022, doi: 10.22061/jecei.2021.8069.474.

     

    [4]       S. Mandour, "An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues," Neutrosophic Syst. Appl., vol. 12, pp. 36–55, Dec. 2023, doi: 10.61356/j.nswa.2023.110.

     

    [5]       A. Salama, M. A. I. Abdel-Khalek, F. Aripov, and S. Mohammed, "Neutrosophic Logic-Based Decision-Making Framework for Smart City Applications," J. Ambient Intell. Humaniz. Comput, vol. 12, no. 3, pp. 3421–3432, Mar. 2021, doi: 10.1007/s12652-020-02501-3.

     

    [6]       A. Salama, Z. Tarek, Y. Darwish, S. Elseuofi, and M. Y. Shams, "Neutrosophic Encoding and Decoding Algorithm for ASCII Code System," vol. 63, 2024, doi: 10.5281/zenodo.10531771.

     

    [7]       T. Alhussein, M. K. Hussain, and R. M. Ali, "A Review on Neutrosophic Sets and Their Applications in Image Processing," Int. J. Comput. Appl., vol. 175, no. 1, pp. 18–25, Apr. 2021, doi: 10.5120/ijca2021921874.

     

    [8]       X. Zhao et al., "Transform Coding in the VVC Standard," IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 10, pp. 3878–3890, Oct. 2021, doi: 10.1109/TCSVT.2021.3087706.

     

    [9]       M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale, "Core Transform Design in the High Efficiency Video Coding (HEVC) Standard," IEEE J. Sel. Topics Signal Process., vol. 7, no. 6, pp. 1029–1041, Dec. 2013, doi: 10.1109/JSTSP.2013.2270429.

     

    [10]    S. Shen, W. Shen, Y. Fan, and X. Zeng, "A Unified 4/8/16/32-Point Integer IDCT Architecture for Multiple Video Coding Standards," in Proc. IEEE Int. Conf. Multimedia Expo, Melbourne, VIC, Australia, 2012, pp. 788–793, doi: 10.1109/ICME.2012.7.

     

    [11]    J.-S. Park, W.-J. Nam, S.-M. Han, and S.-S. Lee, "2-D Large Inverse Transform (16×16, 32×32) for HEVC (High Efficiency Video Coding)," JSTS J. Semicond. Technol. Sci., vol. 12, no. 2, pp. 203–211, Jun. 2012, doi: 10.5573/jsts.2012.12.2.203.

     

    [12]    P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, "Efficient Integer DCT Architectures for HEVC," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 1, pp. 168–178, Jan. 2014, doi: 10.1109/TCSVT.2013.2276862.

     

    [13]    W. Hamidouche et al., "Hardware-Friendly Multiple Transform Selection Module for the VVC Standard," IEEE Trans. Consum. Electron, vol. 68, no. 2, pp. 96–106, May 2022, doi: 10.1109/TCE.2022.3163345.

     

    [14]    L. Prangnell and V. Sanchez, "Adaptive Quantization Matrices for HD and UHD Resolutions in Scalable HEVC," in Proc. Data Compression Conf. (DCC), Snowbird, UT, USA, 2016, p. 626, doi: 10.1109/DCC.2016.47.

     

    [15]    D. Grois and A. Giladi, "Perceptual quantization matrices for high dynamic range H.265/MPEG-HEVC video coding," Proc. SPIE, vol. 11137, p. 111370O, Feb. 2020, doi: 10.1117/12.2525406.

     

    [16]    N. Alquadami and S.-D. Kim, "OpenCL-based optimization methods for utilizing forward DCT and quantization of image compression on a heterogeneous platform," J. Real-Time Image Process., vol. 12, no. 2, pp. 219–235, Aug. 2016, doi: 10.1007/s11554-015-0507-5.

     

    [17]    H. M. Waidyasooriya et al., "OpenCL-Based Design of an FPGA Accelerator for H.266/VVC Transform and Quantization," in Proc. IEEE 65th Int. Midwest Symp. Circuits Syst. (MWSCAS), 2022, pp. 1–4.

     

    [18]    M. Kammoun, A. Ben Atitallah, K. M. A. Ali, and R. Ben Atitallah, "Case study of an HEVC decoder application using high-level synthesis: intraprediction, dequantization, and inverse transform blocks," J. Electron. Imaging, vol. 28, no. 3, p. 033010, 2019, doi: 10.1117/1.JEI.28.3.033010.

     

    [19]    Ben Atitallah, M. Kammoun, K. M. A. Ali, and R. Ben Atitallah, "An FPGA comparative study of high-level and low-level combined designs for HEVC intra, inverse quantization, and IDCT/IDST 2D modules," Int. J. Circuit Theory Appl., pp. 1–17, 2020, doi: 10.1002/cta.2790.

     

    [20]    Pham-Quoc, "HLS and FPGA-Powered Streaming Video Encoder Accelerator for IoTs Edge Computing," J. Adv. Inf. Technol., vol. 15, no. 1, pp. 59–65, Jan. 2024, doi: 10.12720/jait.15.1.59-65.

     

    [21]    Vitis Vision Library User Guide. [Online]. Available: https://docs.amd.com/r/en-US/Vitis_Libraries/vision/overview.html_1_3. [Accessed: 10 Jan. 2023].

     

    [22]    ZCU104 Board User Guide. [Online]. Available: https://docs.amd.com/v/u/en-US/ug1267-zcu104-eval-bd. [Accessed: 10 Jan. 2023].

     

    [23]    M. Xu, L. Jiang, X. Sun, Z. Ye, and Z. Wang, "Learning to Detect Video Saliency With HEVC Features," IEEE Trans. Image Process., vol. 26, no. 1, pp. 369–385, Jan. 2017, doi: 10.1109/TIP.2016.2628583.

     

    [24]    Mercat, M. Viitanen, and J. Vanne, "UVG dataset: 50/120fps 4K sequences for video codec analysis and development," in Proc. ACM Multimedia Syst. Conf., Istanbul, Turkey, Jun. 2020.

    Cite This Article As :
    S., Sumalatha. , , Rajeswari. 2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 262-274. DOI: https://doi.org/10.54216/IJNS.270222
    S., S. , R. (2026). 2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy. International Journal of Neutrosophic Science, (), 262-274. DOI: https://doi.org/10.54216/IJNS.270222
    S., Sumalatha. , Rajeswari. 2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy. International Journal of Neutrosophic Science , no. (2026): 262-274. DOI: https://doi.org/10.54216/IJNS.270222
    S., S. , , R. (2026) . 2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy. International Journal of Neutrosophic Science , () , 262-274 . DOI: https://doi.org/10.54216/IJNS.270222
    S. S. , R. [2026]. 2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy. International Journal of Neutrosophic Science. (): 262-274. DOI: https://doi.org/10.54216/IJNS.270222
    S., S. , R. "2D-DCT and Quantization Accelerator for video codecs on MPSoC FPGA using OpenCL framework and Neutrosophy," International Journal of Neutrosophic Science, vol. , no. , pp. 262-274, 2026. DOI: https://doi.org/10.54216/IJNS.270222