International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 1 , PP: 93-99, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces

Nour M. Easi 1 , L. A. A. Jabar 2 , Ali H. M. Al-Obaidi 3 *

  • 1 Department of Mathematics, College of Education for Pure Science, University of Babylon, Iraq - (edu238.nour.maki@student.uobabylon.edu.iq)
  • 2 Department of Mathematics, College of Education for Pure Science, University of Babylon, Iraq - (l.h.jabar64@gmail.com)
  • 3 Department of Mathematics, College of Education for Pure Science, University of Babylon, Iraq - (aalobaidi@uobabylon.edu.iq)
  • Doi: https://doi.org/10.54216/IJNS.270109

    Received: March 29, 2025 Revised: June 08, 2025 Accepted: July 20, 2025
    Abstract

    In this paper, separation axioms are discussed in neutrosophic crisp topological spaces from a new perspective. This is generally useless because any neutrosophic set does not necessarily have a union of its neutrosophic points under any union and for any kind of points. Hence, the separation properties are studied concerning stable neutrosophic crisp topological spaces, which are determined by two special types of complement. Moreover, various examples are illustrated in these cases.

    Keywords :

    Neutrosophic crisp sets , Neutrosophic crisp points , Stable neutrosophic crisp topological space , stable closure neutrosophic , T_i-Space, i=0,1,2

    References

    [1]       M. H. Hadi and L. A. Al-Swidi, “The Neutrosophic Axial Set theory,” Neutrosophic Sets and Systems, vol. 51, pp. 295-302, 2022.

     

    [2]       A. A. Salama, F. Smarandache, and V. Kroumov, “Neutrosophic Crisp Sets and Neutrosophic Crisp Topological Spaces,” Neutrosophic Sets and Systems, vol. 2, no. 1, pp. 25-30, 2014.

     

    [3]       A. Y. K. Mutawek and R. A. H. Al-Abdulla, “Ideal grill compactness space,” Journal of Interdisciplinary Mathematics, vol. 26, no. 4, 2023.

     

    [4]       Z. F. A. Alhussain and A. F. Hassan, “A Binary Relation Fuzzy Soft Matrix-Theoretic Approach to Image Quality Measurement: Comparison with Statistical Similarity Metrics,” Mathematical Modelling of Engineering Problems, vol. 10, no. 3, pp. 799-804, 2023.

     

    [5]       M. H. Al-Swidi, A. A. Salama, and F. Smarandache, “Neutrosophic Graph Theory and Applications,” Neutrosophic Sets and Systems, vol. 51, pp. 45-56, 2022.

    Cite This Article As :
    M., Nour. , A., L.. , H., Ali. Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 93-99. DOI: https://doi.org/10.54216/IJNS.270109
    M., N. A., L. H., A. (2026). Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces. International Journal of Neutrosophic Science, (), 93-99. DOI: https://doi.org/10.54216/IJNS.270109
    M., Nour. A., L.. H., Ali. Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces. International Journal of Neutrosophic Science , no. (2026): 93-99. DOI: https://doi.org/10.54216/IJNS.270109
    M., N. , A., L. , H., A. (2026) . Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces. International Journal of Neutrosophic Science , () , 93-99 . DOI: https://doi.org/10.54216/IJNS.270109
    M. N. , A. L. , H. A. [2026]. Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces. International Journal of Neutrosophic Science. (): 93-99. DOI: https://doi.org/10.54216/IJNS.270109
    M., N. A., L. H., A. "Separation Axioms Defined by Four Different Points in Neutrosophic Crisp Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 93-99, 2026. DOI: https://doi.org/10.54216/IJNS.270109