International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 1 , PP: 36-42, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

A Numerical Study of Neutrosophic Finite Difference Method and Some Applications

Isra Al-Shbeil 1 * , Ahmad A. Abubaker 2 , Sara A. Khalil 3 , Maha Alammari 4 , Mohamed Soueycatt 5 , Abdallah Al-Husban 6

  • 1 Department of Mathematics, faculty of science, University of Jordan, Amman 11942, Jordan - (i.shbeil@ju.edu.jo)
  • 2 Faculty of Computer Studies, Arab Open University, Saudi Arabia - (a.abubaker@arabou.edu.sa)
  • 3 Mathematics Department, Faculty of Science, Applied Science Private University (ASU) Amman, Jordan - (s_khalil@asu.edu.jo)
  • 4 Department of Mathematics, College of Science, King Saud University, Box 22452 Riyadh 11495, Saudi Arabia - (malammari@ksu.edu.sa)
  • 5 Department of Bioengineering, Al-Andalus Private University for Medical Sciences, Syria - (m.soueycatt55@au.edu.sy)
  • 6 Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600 Irbid, Jordan; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (dralhosban@inu.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.270104

    Received: March 01, 2025 Revised: June 04, 2025 Accepted: July 02, 2025
    Abstract

    In this paper, we present some results about the neutrosophic-generalized version of finite-difference method, where we prove its essential properties, and we apply it to many different examples to clarify the validity of our work. In addition, some numerical tables related to the results will be clarified and presented.

    Keywords :

    Neutrosophic equation , Neutrosophic FDM , Numerical table , Numerical application

    References

    [1]       J. R. Cash, "Block Runge-Kutta methods for numerical integration of initial value problems in ordinary diff. eq.s Part II: the stiff case," Math. Of Computation, vol. 40, no. 161, pp. 193-206, 1983.

     

    [2]       J. C. Butcher, "Numerical methods for diff. eq.s and applications," The Arabian Journal for Science and Engineering, Dharan, Saudi Arabia, vol. 22, no. 2, pp. 17-29, 1997.

     

    [3]       S. H. Lee and J. Kim, "Numerical Solutions for High-Order Differential Equations Using Adaptive Block Methods," Journal of Computational and Applied Mathematics, vol. 387, pp. 112-125, 2021.

     

    [4]       A. M. Amin, I. Shah, M. Asif, K. M. Abualnaja, E. E. Mahmoud, and A. Abdel–Aty, "A powerful numerical technique for treating twelfth-order boundary value problems," Open Physics, vol. 18, pp. 1048-1062, 2020.

     

    [5]       D. G. Zill, A First Course in Differential Equations With Modeling Application, Brooks/Cole, Cengage Learning, 2008.

     

    [6]       P. B. Worland, "Parallel methods for the numerical solutions of ordinary differential equations," IEEE Transactions on Computers, vol. 25, pp. 1045-1048, 1976.

     

    [7]       P. C. Chakravarti and P. B. Worland, "A class of self-starting methods for the numerical solution of y f (x, y)," BIT, vol. 11, pp. 368-383, 1971.

     

    [8]       R. Al-Deiakeh et al., "Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space," Journal of Ocean Engineering and Science, vol. 7, no. 4, pp. 345-352, 2022.

     

    [9]       M. A. Khan and R. S. Gupta, "A Comparative Study of Numerical Techniques for Solving Stiff Differential Equations," Applied Numerical Mathematics, vol. 184, pp. 56-70, 2023.

     

    [10]    T. S. Nguyen and P. L. Tran, "Efficient Algorithms for Boundary Value Problems in Differential Equations," Mathematics and Computers in Simulation, vol. 198, pp. 310-325, 2022.

    Cite This Article As :
    Al-Shbeil, Isra. , A., Ahmad. , A., Sara. , Alammari, Maha. , Soueycatt, Mohamed. , Al-Husban, Abdallah. A Numerical Study of Neutrosophic Finite Difference Method and Some Applications. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 36-42. DOI: https://doi.org/10.54216/IJNS.270104
    Al-Shbeil, I. A., A. A., S. Alammari, M. Soueycatt, M. Al-Husban, A. (2026). A Numerical Study of Neutrosophic Finite Difference Method and Some Applications. International Journal of Neutrosophic Science, (), 36-42. DOI: https://doi.org/10.54216/IJNS.270104
    Al-Shbeil, Isra. A., Ahmad. A., Sara. Alammari, Maha. Soueycatt, Mohamed. Al-Husban, Abdallah. A Numerical Study of Neutrosophic Finite Difference Method and Some Applications. International Journal of Neutrosophic Science , no. (2026): 36-42. DOI: https://doi.org/10.54216/IJNS.270104
    Al-Shbeil, I. , A., A. , A., S. , Alammari, M. , Soueycatt, M. , Al-Husban, A. (2026) . A Numerical Study of Neutrosophic Finite Difference Method and Some Applications. International Journal of Neutrosophic Science , () , 36-42 . DOI: https://doi.org/10.54216/IJNS.270104
    Al-Shbeil I. , A. A. , A. S. , Alammari M. , Soueycatt M. , Al-Husban A. [2026]. A Numerical Study of Neutrosophic Finite Difference Method and Some Applications. International Journal of Neutrosophic Science. (): 36-42. DOI: https://doi.org/10.54216/IJNS.270104
    Al-Shbeil, I. A., A. A., S. Alammari, M. Soueycatt, M. Al-Husban, A. "A Numerical Study of Neutrosophic Finite Difference Method and Some Applications," International Journal of Neutrosophic Science, vol. , no. , pp. 36-42, 2026. DOI: https://doi.org/10.54216/IJNS.270104