International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 3 , PP: 26-48, 2025 | Cite this article as | XML | PDF | Full Length Article

An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras

Anas Al-Masarwah 1 , Manivannan Balamurugan 2 * , Thukkaraman Ramesh 3 , Majdoleen Abuqamar 4 , Maryam Abdullah Alshayea 5

  • 1 Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan - (anas.almasarwah@anu.edu.jo)
  • 2 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\&D Institute of Science and Technology, Chennai 600062, Tamil Nadu, India - (balamurugansvm@gmail.com)
  • 3 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, Tamil Nadu, India; Department of Mathematics, Sri Vidya Mandir Arts & Science College (Autonomous), Uthangarai 636902, Tamil Nadu, India - (ramesh1000.d@gmail.com)
  • 4 Department of Mathematics, Faculty of Science, Jadara University, Irbid 21110, Jordan - (m.abuqamar@jadara.edu.jo)
  • 5 Department of Computer Science, College of Engineering and InformationTechnology, Onaizah Colleges, Al-Qassim 56447, Saudi Arabia - (mmeem514@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.260303

    Received: January 27, 2025 Revised: February 23, 2025 Accepted: March 26, 2025
    Abstract

    A complex linear Diophantine fuzzy (CLDF) set extends a linear Diophantine fuzzy set (LDFS) by handling uncertainty with complex-valued membership degrees within a unit disc. In this paper, we combine the notions of LDFS, BCK-algebra, and complex fuzzy set (CFS) to preface and elaborate the innovative concepts of CLDF subalgebras (CLDF − Subs), CLDF ideals (CLDF − Ids), CLDF implicative ideals (CLDF − IIds), and CLDF positive implicative ideals (CLDF − PIIds) in BCK-algebras, and probe their fundamental characteristics. These new notations of certain kinds of algebraic substructures in BCK-algebras serve as a bridge among CLDFS, crisp set, and BCK-algebra and also demonstrate the influence of the CLDFS on a BCK-algebra. Moreover, we examine some illustrative examples and prevalent features of these innovative notions in detail. Finally, characterizations of these intricate fuzzy structures are given, and related results for ideals, implicative ideals, and positive implicative ideals in the view of CLDFSs are obtained.

    Keywords :

    BCK-algebra , Complex linear Diophantine fuzzy set , Complex linear Diophantine fuzzy sub-algebra , Complex linear Diophantine fuzzy idea

    References

    [1] Y. Imai, K. Is´eki, On axiom systems of propositional calculi, XIV. Proc. Jpn. Acad. 42(1) (1966), 19–21.

    [2] K. Is´eki, An algebra related with a propositional calculus, Proc. Jpn. Acad. 42(1) (1966), 26–29.

    [3] K. Is´eki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 3(1978), 1–26.

    [4] L. A. Zadeh, Fuzzy sets, Inf. Control. 8(3) (1965), 338–353.

    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20(1) (1986), 87–96.

    [6] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst. 22(4) (2014), 958–965.

    [7] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple- attribute decision making, Int. J. Intell. Syst. 33(20) (2018), 259–280.

    [8] M. I. Ali, Another view on q-rung orthopair fuzzy sets I,nt. J. Intell. Syst. 33(11) (2018), 2139–2153.

    [9] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst. 37(4) (2019), 5417–5439.

    [10] A. Aydogdu, S. Gul, T. Alniak, New information measures for linear Diophantine fuzzy sets and their ap- plications with LDF-ARAS on data storage system selection problem, Expert Systems with Applications, 252(A) (2024), 124135.

    [11] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Dio- phantine fuzzy emergency decision support system for COVID 19, J. Ambient. Intell. Humaniz. Comput. 13(2022), 1687–1713.

    [12] A. Al-Quran, T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision- making, AIMS Mathematics, bf8(5) (2023), 12257–12286.

    [13] D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans Fuzzy Syst. 11(4) (2003), 450–461.

    [14] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst. 10(20) (2002), 171–186.

    [15] A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA. 1482(1) (2012), 464–470.

    [16] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst. 6 (2020), 15–27.

    [17] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(30) (1971), 512–517.

    [18] O. G. Xi, Fuzzy BCK-algebras, Math. Jpn. 36 (1991), 935–942.

    [19] B. B. Ahmad, Fuzzy BCI-algebras, J. Fuzzy Math. 1 (1993), 445–452.

    [20] Y. B. Jun, H. M. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Int. J. Math. Math. Sci. 24 (2000), 839–849.

    [21] M. T. Nirmala, D. Jayalakshmi, G. Subbiah, Applications of pythagorean fuzzy subalgebras of BCK/BCI- algebra, Afr. J. Bio. Sc. 6(12) (2024), 3001–3013.

    [22] G. Muhiuddin, M. Al-Tahan, A. Mahboob, S. Hoskova-Mayerova, S. Al-Kaseasbeh, Linear Diophantine fuzzy set theory applied to BCK/BCI-algebras, Mathematics. 10 (2022), 2138.

    [23] H. Kamaci, Linear Diophantine fuzzy algebraic structures, J. Ambient Intell. Humaniz. Comput. 12(11) (2021), 10353–10373.

    [24] F. Yousafzai, M. D. Zia, M.U.I. Khan, M. M. Khalaf, R. Ismail, Linear Diophantine fuzzy sets over complex fuzzy information with applications in information theory, Ain Shams Engineering Journal, 15(1) (2024), 102327.

    [25] H. Kamaci, Complex linear diophantine fuzzy sets and their cosine similarity measures with applications, Complex Intell. Syst. 8(2) (2022), 1281–1305.

    [26] G. Hao, F. Yousafzai, M. D. Zia, M. U. I. Khan, M. Irfan, K. Hila, Complex linear diophantine fuzzy sets over AG-groupoids with applications in civil engineering, Symmetry, 15(1) (2023), 74.

    Cite This Article As :
    Al-Masarwah, Anas. , Balamurugan, Manivannan. , Ramesh, Thukkaraman. , Abuqamar, Majdoleen. , Abdullah, Maryam. An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 26-48. DOI: https://doi.org/10.54216/IJNS.260303
    Al-Masarwah, A. Balamurugan, M. Ramesh, T. Abuqamar, M. Abdullah, M. (2025). An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras. International Journal of Neutrosophic Science, (), 26-48. DOI: https://doi.org/10.54216/IJNS.260303
    Al-Masarwah, Anas. Balamurugan, Manivannan. Ramesh, Thukkaraman. Abuqamar, Majdoleen. Abdullah, Maryam. An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras. International Journal of Neutrosophic Science , no. (2025): 26-48. DOI: https://doi.org/10.54216/IJNS.260303
    Al-Masarwah, A. , Balamurugan, M. , Ramesh, T. , Abuqamar, M. , Abdullah, M. (2025) . An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras. International Journal of Neutrosophic Science , () , 26-48 . DOI: https://doi.org/10.54216/IJNS.260303
    Al-Masarwah A. , Balamurugan M. , Ramesh T. , Abuqamar M. , Abdullah M. [2025]. An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras. International Journal of Neutrosophic Science. (): 26-48. DOI: https://doi.org/10.54216/IJNS.260303
    Al-Masarwah, A. Balamurugan, M. Ramesh, T. Abuqamar, M. Abdullah, M. "An Investigation of Complex Linear Diophantine Fuzzy Ideals in BCK-Algebras," International Journal of Neutrosophic Science, vol. , no. , pp. 26-48, 2025. DOI: https://doi.org/10.54216/IJNS.260303