International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 4 , PP: 371-386, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model

Raed Hatamleh 1 , Issam Bendib 2 , Ahmad Qazza 3 , Rania Saadeh 4 * , Adel Ouannas 5 , Mohamed Dalah 6

  • 1 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan - (raed@jadara.edu.jo)
  • 2 Applied Mathematics and Modeling Laboratory, Department of Mathematics, Faculty of Exact Sciences, Brothers Mentouri University of Constantine, Algeria - ( bendib.issam@doc.umc.edu.dz)
  • 3 Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan - ( aqazza@zu.edu.jo)
  • 4 rsaadeh@zu.edu.jo - (Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan )
  • 5 Department of Mathematics and Computer Science , University of Oum EL-Bouaghi, Oum El Bouaghi 04000, Algeria - ( ouannas.adel@univ-oeb.dz)
  • 6 Applied Mathematics and Modeling Laboratory, Department of Mathematics, Faculty of Exact Sciences, Brothers Mentouri University of Constantine, Algeria - ( dalah.mohamed@umc.edu.dz)
  • Doi: https://doi.org/10.54216/IJNS.250431

    Received: October 24, 2024 Revised: December 14, 2024 Accepted: January 23, 2025
    Abstract

    Finite-time stability is a critical property for systems where rapid stabilization is required, as it ensures that the system reaches and maintains equilibrium within a specified time frame, regardless of initial conditions. This contrasts with asymptotic stability, which only guarantees eventual convergence over an indefinite period. This research focuses on demonstrating the finite-time stability of the glycolysis reaction-diffusion system at its equilibrium point. The equilibrium points of the system are derived, and finite-time stability conditions are established. Definitions and lemmas are provided to support the theoretical framework, including conditions for finite-time convergence and Lyapunov stability. A key result shows that the system possesses a unique equilibrium point that can achieve finite-time stability under certain conditions. Additionally, the finite-time synchronization scheme is discussed, highlighting the process of rapidly achieving synchronized behavior in reaction-diffusion systems. The proposed method involves associating the main system with a response system and addressing synchronization discrepancies through the introduction of an error vector. This research provides a robust framework for understanding and achieving finite-time stability and synchronization in complex reaction-diffusion systems.

    Keywords :

    Finite-time stability , Glycolysis reaction-diffusion system , Lyapunov stability , Finite-time synchronization scheme

    References

    [1] Sel’kov, E. E. Self-Oscillations in Glycolysis 1. A Simple Kinetic Model. European Journal of Biochemistry, 4, 79-86 (1968).

    [2] Wolf, J., Heinrich, R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochemical Journal, 345, 321–334 (2000).

    [3] Goldbeter, A. Patterns of Spatiotemporal Organization in an Allosteric Enzyme Model. Proceedings of the National Academy of Sciences of the United States of America, 70(11), 3255-3259 (1973).

    [4] Zhang, L., Gao, Q., Wang, Q., Zhang, X. Simple and complex spatiotemporal structures in a glycolytic allosteric enzyme model. Biophysical Chemistry, 125, 112 (2007).

    [5] Mair, T., Warnke, C., Muller, S. C. Spatio-temporal dynamics in glycolysis. Faraday Discussions, 120, 249 (2001).

    [6] Abu-Ghuwaleh, M., Saadeh, R. & Qazza, A. A Novel Approach in Solving Improper Integrals. Axioms. 11, 572 (2022)

    [7] Ahmed, S., Qazza, A., Saadeh, R. & Elzaki, T. Conformable Double Laplace–Sumudu Iterative Method. Symmetry. 15, 78 (2022)

    [8] Ala’yed, O., Saadeh, R. & Qazza, A. Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering. AIMS Mathematics. 8, 14747-14766 (2023)

    [9] Alzahrani, A., Saadeh, R., Abdoon, M., Elbadri, M., Berir, M. & Qazza, A. Effective methods for numerical analysis of the simplest chaotic circuit model with Atangana–Baleanu Caputo fractional derivative. Journal Of Engineering Mathematics. 144 (2024)

    [10] Alzahrani, S., Saadeh, R., Abdoon, M., Qazza, A., EL Guma, F. & Berir, M. Numerical Simulation of an Influenza Epidemic: Prediction with Fractional SEIR and the ARIMA Model. Applied Mathematics & Information Sciences. 18, 1-12 (2024)

    [11] Chandan, K., Saadeh, R., Qazza, A., Karthik, K., Kumar, R., Kumar, R., Khan, U., Masmoudi, A., Abdou, M., Ojok, W. & Kumar, R. Predicting the thermal distribution in a convective wavy fin using a novel training physics-informed neural network method. Scientific Reports. 14 (2024)

    [12] Hazaymeh, A., Saadeh, R., Hatamleh, R., Alomari, M. & Qazza, A. A Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with Lp-Error Estimates. Axioms. 12, 803 (2023)

    [13] Saadeh, R., Abu-Ghuwaleh, M., Qazza, A. & Kuffi, E. A Fundamental Criteria to Establish General Formulas of Integrals. Journal Of Applied Mathematics. 2022 pp. 1-16 (2022)

    [14] Saadeh, R., Ahmed, S., Qazza, A. & Elzaki, T. Adapting partial differential equations via the modified double ARA-Sumudu decomposition method. Partial Differential Equations In Applied Mathematics. 8 pp. 100539 (2023)

    [15] Saadeh, R., Ala’yed, O. & Qazza, A. Analytical Solution of Coupled Hirota–Satsuma and KdV Equations. Fractal And Fractional. 6, 694 (2022)

    [16] Bagyan, S., Mair, T., Dulos, E., Boissonade, J., De Kepper, P., Muller, S. C. Glycolytic oscillations and waves in an open spatial reactor: Impact of feedback regulation of phosphofructokinase. Biophysical Chemistry, 116, 67 (2005).

    [17] Lavrova, A., Bagyan, S., Mair, T., Hauser, M., Schimansky-Geier, L. Biosystems, 97, 127 (2009).

    [18] Lavrova, A. I., Schimansky-Geier, L. Modeling of glycolytic wave propagation in an open spatial reactor with inhomogeneous substrate influx. Physical Review E, 79(1) (2009).

    [19] Verveyko, D. V., Verisokin, A. Y., Postnikov, E. B. Mathematical model of chaotic oscillations and oscillatory entrainment in glycolysis originated from periodic substrate supply. Chaos, 27, 083104 (2017).

    [20] Hamadneh, T., Hioual, A., Alsayyed, O., AL-Khassawneh, Y. A., Al-Husban, A., Ouannas, A. Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction–Diffusion Model. Fractal Fract., 7, 587 (2023).

    [21] Ahmed, N., Ss, T., Imran, M., Rafiq, M., Rehman, M. A., Younis, M. Numerical analysis of auto-catalytic glycolysis model. AIP Advances, 9, 085213 (2019).

    [22] Ouannas, A., Wang, X., Pham, V. T., Grassi, G., Huynh, V. V. Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach. Boundary Value Problems, 2019, 74.

    [23] Eroglu, D., Lamb, J. S. W., Pereira, T. Synchronization of chaos and its applications. Contemporary Physics, 58, 207–243 (2017).

    [24] Ouannas, A., Mesdoui, F., Momani, S., Batiha, I., Grassi, G. Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law. Archives of Control Sciences, 31(2), 333–345 (2021).

    [25] Mesdoui, F., Ouannas, A., Shawagfeh, N., Grassi, G., Pham, V. T. Synchronization methods for the Degn-Harrison reaction-diffusion systems. IEEE Access, 8, 91829-91836 (2020).

    [26] Ouannas, A., Bendoukha, S., Volos, C., Boumaza, N., Karouma, A. Synchronization of fractional hyperchaotic Rabinovich systems via linear and nonlinear control with an application to secure communications. International Journal of Control, Automation and Systems, 17, 2211–2219 (2019).

    [27] Ouannas, A., Al-Sawalha, M.M. On Λ-Ψ generalized synchronization of chaotic dynamical systems in continuous-time. The European Physical Journal Special Topics, 225(1), 187–196 (2016).

    [28] Ouannas, A. Co-existence of various types of synchronization between hyperchaotic maps. Nonlinear Dyn. Syst. Theory, 16, 312–321 (2016).

    [29] Bendoukha, S., Ouannas, A., Wang, X., Khennaoui, A.A., Phan, V.T., Grassi, G. The co-existence of different synchronization types in fractional-order discrete-time chaotic systems with non-identical dimensions and order. Entropy, 20(9), 710 (2018).

    [30] Khennaoui, A.A., Ouannas, A., Bendoukha, S., Grassi, G., Wang, X., Phan, V.T. Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions. Advances in Difference Equations, 2018, 1–14 (2018).

    [31] Ouannas, A., Wang, X., Pham, V.T., Grassi, G., Huynh, V.V. Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach. Boundary Value Problems, 2019(74) (2019).

    [32] Djenina, N., Ouannas, A., Batiha, I.M., Grassi, G., Pham, V.T. On the stability of linear incommensurate fractional-order difference systems. Mathematics, 8(10), 1754 (2020).

    [33] Hioual, A., Oussaeif, T.E., Ouannas, A., Grassi, G., Batiha, I.M., Momani, S. New results for the stability of fractional-order discrete-time neural networks. Alexandria Engineering Journal, 61(12), 10359–10369 (2022).

    [34] Saadeh, R., Abbes, A., Al-Husban, A., Ouannas, A., Grassi, G. The Fractional Discrete Predator-Prey Model: Chaos, Control and Synchronization. Fractal and Fractional, 7(2), 120 (2023).

    [35] Oussaeif, T.E., Antara, B., Ouannas, A., Batiha, I.M., Saad, K.M., Jahanshahi, H. Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition. Journal of Function Spaces, 2022 (2022).

    [36] Debbouche, N., Almatroud, A.O., Ouannas, A., Batiha, I.M. Chaos and coexisting attractors in glucoseinsulin regulatory system with Incommensurate fractional-order derivative. Chaos, Solitons & Fractal, 143, 110.

    [37] Shatnawi, M.T., Djenina, N., Ouannas, A., Batiha, I.M., Grassi, G. Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems. Alexandria Engineering Journal, 61(2), 1655–1663 (2022).

    [38] Ahead, I., Ouannas, A., Shafiq, M., Pham, V.T., Baleanu, D. Finite-time stabilization of a perturbed chaotic finance model. Journal of Advanced Research, 32, 1–14 (2021).

    [39] Khennaoui, A.A., Almatroud, A.O., Ouannas, A., Al-sawalha, M.M., Grassi, G. An unprecedented 2- dimensional discrete-time fractional-order system and its hidden chaotic attractors. Mathematical Problems in Engineering, 2021, 1–10 (2021).

    [40] Debbouche, N., Ouannas, A., Batiha, I.M., Grassi, G., Kaabar, M.K.A. Chaotic behavior analysis of a new Incommensurate fractional-order hopfield neural network system. Complexity, 2021, 1–11 (2021).

    [41] Abbes, A., Ouannas, A., Shawagfeh, N., Jahanshahi, H. The fractional-order discrete COVID-19 pandemic model: stability and chaos. Nonlinear Dynamics, 111(1), 965–983 (2023).

    [42] Ouannas, A., Khennaoui, A.A., Momani, S., Pham, V.T. The discrete fractional duffing system: Chaos, 0-1 test, C complexity, entropy, and control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(8), 2020 (2020).

    [43] Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.T., Ziar, T. Dead-beat synchronization control in discrete-time chaotic systems. 2017 6th International Conference on Modern Circuits and Systems (2017).

    [44] Hioual, A., Ouannas, A., Oussaeif, T.E., Grassi, G., Batiha, I.M., Momani, S. On variable-order fractional discrete neural network: solvability and stability. Fractal and Fractional, 6(2), 119 (2022).

    [45] Ouannas, A., Khennaoui, A.A., Wang, X., Pham, V.T., Boulaaras, S., Momani, S. Bifurcation and chaos in the fractional form of Hénon-Lozi type map. The European Physical Journal Special Topics, 229, 2261–2273 (2020).

    [46] Haddad, W.M., L’Afflitto, A. Finite-Time Stabilization and Optimal Feedback Control. IEEE Transactions on Automatic Control, 61(4), April 2016.

    [47] Yang, X., Song, Q., Liu, Y., Zhao, Z. Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing, 152, 19–26 (2015).

    [48] Ouannas, A., Batiha, I.M., Bekiros, S., Liu, J., Jahanshahi, H., Aly, A.A., Alghtani, A.H. Synchronization of the Glycolysis Reaction-Diffusion Model via Linear Control Law. Entropy, 23, 1516 (2020).

    [49] Rao, R., Lin, Z., Ai, X., Wu, J. Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse. Mathematics, 10, 2064 (2022).

    [50] Corduneanu, C. Principles of Differential and Integral Equations. Allyn and Bacon, Boston (1971).

    [51] Feng, Z., Xiang, Z. Finite-time stability of fractional-order nonlinear systems. Chaos, 34, 023105 (2024).

    [52] Wang, L., Yang, X., Liu, H., Chen, X. Synchronization in Finite Time of Fractional-Order ComplexValued Delayed Gene Regulatory Networks. Fractal Fract., 7, 347 (2023).

    [53] Li, Y., Yang, X., Shi, L. Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing, 185, 242–253 (2016). 

    Cite This Article As :
    Hatamleh, Raed. , Bendib, Issam. , Qazza, Ahmad. , Saadeh, Rania. , Ouannas, Adel. , Dalah, Mohamed. Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 371-386. DOI: https://doi.org/10.54216/IJNS.250431
    Hatamleh, R. Bendib, I. Qazza, A. Saadeh, R. Ouannas, A. Dalah, M. (2025). Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model. International Journal of Neutrosophic Science, (), 371-386. DOI: https://doi.org/10.54216/IJNS.250431
    Hatamleh, Raed. Bendib, Issam. Qazza, Ahmad. Saadeh, Rania. Ouannas, Adel. Dalah, Mohamed. Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model. International Journal of Neutrosophic Science , no. (2025): 371-386. DOI: https://doi.org/10.54216/IJNS.250431
    Hatamleh, R. , Bendib, I. , Qazza, A. , Saadeh, R. , Ouannas, A. , Dalah, M. (2025) . Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model. International Journal of Neutrosophic Science , () , 371-386 . DOI: https://doi.org/10.54216/IJNS.250431
    Hatamleh R. , Bendib I. , Qazza A. , Saadeh R. , Ouannas A. , Dalah M. [2025]. Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model. International Journal of Neutrosophic Science. (): 371-386. DOI: https://doi.org/10.54216/IJNS.250431
    Hatamleh, R. Bendib, I. Qazza, A. Saadeh, R. Ouannas, A. Dalah, M. "Finite time Stability and Synchronization of the Glycolysis Reaction-Diffusion model," International Journal of Neutrosophic Science, vol. , no. , pp. 371-386, 2025. DOI: https://doi.org/10.54216/IJNS.250431