International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 4 , PP: 135-146, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Operations on Translation of Fermatean Neutrosophic INK-Algebra

Wadei Faris AL-Omeri 1 , M.Kaviyarasu 2 , Rajeshwari M. 3

  • 1 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan - (kavitamilm@gmail.com)
  • 2 Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology, Chennai, India - (wadeimoon1@hotmail.com)
  • 3 Department of Mathematics,Presidency University, Bangalore, India - (rajeakila@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.250411

    Received: July 22, 2024 Revised: October 15, 2024 Accepted: December 26, 2024
    Abstract

    This paper investigates the theoretical basis of fermatean neutrosophic sets, which were first introduced by Smarandache, to clarify the relationship between single-valued fermatean neutrosophic sets and their role as specific subsets in the wider context of fermatean neutrosophic sets, particularly in science and engineering. This study investigates fermatean neutrosophic INK-ideals within INK-algebras using the translation concept, which is proposed as an extension of intuitionistic fuzzy sets. First, translation fermatean neutrosophic INKalgebras are presented and their fundamental features are studied. Furthermore, the research investigates properties related to the translation of INK-subalgebras and INK-ideals, as well as the dynamics of their unions, intersections, and multiplications for fermatean neutrosophic INK-ideals. The article adds definitions and theorems to provide a complete grasp of the problems of fermatean neutrosophic INK-algebras.

    Keywords :

    Neutrosophic sets , Single-valued neutrosophic sets , INK-algebras , Translation , Intuitionistic fuzzy sets , Neutrosophic INK-ideals

    References

    [1] A. A. A. Agboola and B. Davvaz, Introduction to Neutrosophic BCI/BCKAlgebras,Information.International Journal of Mathematics and Mathematical Sciences, 2015,130. https://doi.org/10.1155/2015/370267.

    [2] Atanassov, K.T, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 1986, 20, 87-96.

    [3] Bordbar, Hashem; Xiao Long Xin; Rajab Ali Borzooei; and Young Bae Jun, Positive implicative ideals of BCK-algebras based on neutrosophic sets and falling shadows. Neutrosophic Sets and Systems, 2022, 48(1).

    [4] F. Smarandache, Neutrosophic set-A generalization of the intuitionistic fuzzy set. Internat. J. Pure Appl. Math. 2005, 24, 287–297.

    [5] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic. Pro Quest Information and Learning, Ann Arbor, Michigan, USA. 1998.

    [6] F Smarandache, New Types of Soft Sets” HyperSoft Set, IndetermSoft Set, IndetermHyperSoft Set, and TreeSoft Set”: An Improved Version. Neutrosophic Systems With Applications,2023, 8, 35–41. https://doi.org/10.61356/j.nswa.2023.41

    [7] Jun, Young Bae and Roh, Eun Hwan. MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Mathematics, 1999, 17(1), 588-601.

    [8] Lee, K. J., Y. B. Jun, M. I. Doh, Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras. Commun. Korean Math.Soc., 2009, 24, 353–36.

    [9] L. A. Zadeh,Fuzzy sets. Information and Control., 1965,338-353.

    [10] M. Kaviyarasu., K. Indhira., V.M. Chandrasekaran, Fuzzy p-ideal in INK-Algebra. Journal of Xi’an University of Architecture and Technology, 2000, 12, 4746-4752.

    [11] M. Kaviyarasu., K. Indhira., V.M. Chandrasekaran, Neutrosophic set in INK-Algebra, Adv. Math., Sci. J., 2000, 9, 4345–4352.

    [12] M. Kaviyarasu., K. Indhira., V.M. Chandrasekaran, Direct product of Neutrosophic INKAlgebras. Infinite Study., 2020, 38.

    [13] M Kaviyarasu and K Indhira, On intuitionistic fuzzy INK-ideals of INK-algebras, IOP Conf. Ser.: Mater. Sci. Eng.2017, 263 042142.DOI 10.1088/1757-899X/263/4/042142.

    [14] Manokaran, Surya, and Muralikrishna Prakasam. On MBJ–Neutrosophic B-Subalgebra. Neutrosophic Sets and Systems, 2019, 28, 216-227.

    [15] Mohsin Khalid , Neha Andaleeb Khalid , Rakib Iqbal, MBJ-neutrosophic T-ideal on B-algebra. International Journal of Neutrosophic Science, 2020, 1(1), 29-39.

    [16] M. Mohseni Takallo., R.A. Borzooei., Young Bae Jun.,MBJ-neutrosophic structures and its applications in BCK/BCI-algebras. Neutrosophic Sets and Systems, 2018, 23.

    [17] M.Kaviyarasu , Rajeshwari M., Direct Product of Neutrosophic h-ideal in INK-Algebra. International Journal of Neutrosophic Science, 2023, 20(1), 119-127. Doi : https://doi.org/10.54216/IJNS.200110.

    [18] Ranulfo Paiva Barbosa , & Smarandache, F. Pura Vida Neutrosophic Algebra. Neutrosophic Systems With Applications, 2023, 9, 101–106. https://doi.org/10.61356/j.nswa.2023.68

    [19] Song, S.-Z.; Ozt¨urk, M.A.; Jun, Y.-B. Commutative Ideals of BCI-Algebras Using MBJ-Neutrosophic ¨ Structures. Mathematics, 2021, 9, 2047.

    [20] Senapati, T., Fuzzy Translations of Fuzzy H-ideals in BCK/BCI-Algebras. Journal of the Indonesian Mathematical Society, 2015, 21(1), 45–58.

    [21] Senapati,T.,M. Bhowmik,M.Pal, B. Davvaz. Atanassov’s intuitionistic fuzzy translations of intuitionistic fuzzy subalgebras and ideals in BCK/BCI-algebras. Eurasian Mathematical Journal, 2015, 6 (1), 96–114.

    [22] Smarandache, F.,Foundation of the SuperHyperSoft Set and the Fuzzy Extension Super HyperS oft Set: A New Vision. Neutrosophic Systems With Applications,2023, 11, 48–51. https://doi.org/10.61356/j.nswa.2023.95

    [23] WadeiF. Al-Omeri, Saeid Jafari and Smarandache, F. (2020). Neutrosophic Fixed Point Theorems and Cone Metric Spaces. Neutrosophic Sets and Systems, 2020, 31, 250-265.

    [24] Wadei Faris Al-Omeri., On Mixed b-Fuzzy Topological Spaces. International Journal of Fuzzy Logic and Intelligent Systems, 20(3), 242-246.

    [25] Wadei Faris Al-Omeri., On almost e-I-continuous functions. Demonstratio Mathematica, 2021, 54(1), 168- 177.

    [26] Wadei F. Al-Omeri , O. H. Khalil and A. Ghareeb, Degree of (L, M)-fuzzy semi-precontinuous and (L, M)-fuzzy semi preirresolute functions. Demonstr. Math., 51(1), 182197.

    [27] Wadei F. Al-Omeri.et.al., On Ra operator in ideal topological spaces. Creat. Math. Inform, 2016, 25, 2016,1-10.

    [28] Y.B. Jun., J. Meng, Fuzzy p-ideals in BCI-algebras. Mathematica Japonica, 1994, 40, 271–282.

    [29] Y.B.Jun, Translations of fuzzy ideals in BCK/BCI algebras. Hacettepe Journal of Mathematics and Statistics, 2021, 40, 349–358.

    [30] Iseki, K. On BCI-algebras. Math. Semin. Notes 1980.

    [31] Imai, Y.; Iseki, K. On axiom systems of propositional calculi XIV. Proc. Jpn. Acad. 1966, 42, 19–22.

    [32] Iseki, K.; Tanaka, S. An introduction to the theory of BCK algebras. Math. Jpn. 1978, 23, 1–26.

    Cite This Article As :
    Faris, Wadei. , , M.Kaviyarasu. , M., Rajeshwari. Operations on Translation of Fermatean Neutrosophic INK-Algebra. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 135-146. DOI: https://doi.org/10.54216/IJNS.250411
    Faris, W. , M. M., R. (2025). Operations on Translation of Fermatean Neutrosophic INK-Algebra. International Journal of Neutrosophic Science, (), 135-146. DOI: https://doi.org/10.54216/IJNS.250411
    Faris, Wadei. , M.Kaviyarasu. M., Rajeshwari. Operations on Translation of Fermatean Neutrosophic INK-Algebra. International Journal of Neutrosophic Science , no. (2025): 135-146. DOI: https://doi.org/10.54216/IJNS.250411
    Faris, W. , , M. , M., R. (2025) . Operations on Translation of Fermatean Neutrosophic INK-Algebra. International Journal of Neutrosophic Science , () , 135-146 . DOI: https://doi.org/10.54216/IJNS.250411
    Faris W. , M. , M. R. [2025]. Operations on Translation of Fermatean Neutrosophic INK-Algebra. International Journal of Neutrosophic Science. (): 135-146. DOI: https://doi.org/10.54216/IJNS.250411
    Faris, W. , M. M., R. "Operations on Translation of Fermatean Neutrosophic INK-Algebra," International Journal of Neutrosophic Science, vol. , no. , pp. 135-146, 2025. DOI: https://doi.org/10.54216/IJNS.250411