Volume 25 , Issue 4 , PP: 80-100, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Abdelhamid Bennoui 1 , Soheyb Milles 2 , Lemnaouar Zedam 3
Doi: https://doi.org/10.54216/IJNS.250408
Based on the concept of Atanassov’s intuitionistic fuzzy set on a universe X, we introduce the concepts of intuitionistic fuzzy ideals and intuitionistic fuzzy filters on an intuitionistic fuzzy lattice. More specifically, we provide characterizations of these concepts in terms of the intuitionistic fuzzy lattice meet and join operations, in terms of some associated fuzzy sets, as well as, in terms of their crisp level sets. Furthermore, we introduce the concepts of prime intuitionistic fuzzy ideals (resp. filters) as interesting kinds, and investigate their various properties and characterizations.
Intuitionistic fuzzy set , Intuitionistic fuzzy order relation , Intuitionistic fuzzy ideal , Intuitionistic fuzzy filter
[1] M. Akram, W. Dudek, Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras, World Applied Sciences Journal, vol. 7(7), pp. 812–819, 2009.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Sofia: VII ITKRs Scientific Session, 1983.
[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, pp. 87–96, 1986.
[4] K. T. Atanassov, Intuitionistic fuzzy sets. New York: Springer-Verlag, Heidelberg, 1999.
[5] B. Banerjee, DKr. Basnet, Intuitionistic fuzzy sub-rings and ideals, J. Fuzzy Math, vol 11(1), pp. 139– 155, 2003.
[6] R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, NIFS, vol. 3, pp. 3–11, 1997.
[7] S. Boudaoud, L. Zedam, S. Milles, Principal intuitionistic fuzzy ideals and filters on a lattice, Discussiones Mathematicae-General Algebra and Application, Vol. 40, pp. 75–88, 2020.
[8] N. Bourbaki, Topologie g´en´erale. Berlin Heidelberg, Springer-Verlag, 2007.
[9] P. Burillo, H. Bustince, Intuitionistic fuzzy relations (Part I), Mathware and computing, vol. 2, pp. 5–38, 1995.
[10] P. Burillo, H. Bustince, Intuitionistic fuzzy relations (Part II), Effect of Atanassov’s operators on the properties of the bi fuzzy relations, Mathware and computing, vol. 2, pp. 117–148, 1995.
[11] H. Bustince, P. Burillo, Antisymmetrical intuitionistic fuzzy relation, Order on the referential set induced by a bi-fuzzy relation, Fuzzy Sets and Systems, vol. 2, pp. 17–22, 1995.
[12] H. Bustince, P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, vol. 3, pp. 293–303, 1996.
[13] H. Bustince, P. Burillo, Construction of intuitionistic fuzzy relations with predetermined properties, Fuzzy Sets and Systems, vol. 3, pp. 79–403 2003.
[14] B.A. Davey, H.A. Priestley, Introduction to lattices and order, Second ed. Cambridge, Cambridge University Press, 2002.
[15] G. Deschrijver, E.E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, vol. 136, pp. 333–361, 2003.
[16] G.J. Wang, Y.Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, vol. 110, pp. 271–274, 2000.
[17] K. Hur, S.Y. Jang, H.W. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, vol. 3(1), pp. 72–77, 2003.
[18] G.Gr¨atzer, General lattice theory, New York, Academic Press, 1978.
[19] K.H. Kim, Y.B.Jun, Intuitionistic fuzzy interior ideals of semigroups, International Journal of Mathematics and Mathematical Sciences, vol. 27(5), pp. 261–267, 2001.
[20] I. Mezzomo, B.C. Bedregal, R.H.N. Santiago, Types of fuzzy ideals in fuzzy lattices, Journal of Intelligent and Fuzzy Systems, vol. 28, pp. 929–945, 2015.
[21] S. Milles, E. Rak, L.Zedam, Intuitionistic fuzzy complete lattices, In: Novel Developments in Uncertainty Representation and Processing Advances in Intelligent Systems and Computing, Springer International Publishing Switzerland, vol. 401, pp.149–160, 2016.
[22] S. Milles, L. Zedam, E. Rak, Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations, Journal of Fuzzy Set Valued Analysis, vol 2, pp. 143–159, 2017.
[23] K. Saadaoui, S. Milles, L. Zedam, Fuzzy ideals and fuzzy filters on topologies generated by fuzzy relations, Int. J. Anal. Appl., Vol. 20 (48), 2022.
[24] B.S. Schr¨oder, Ordered Sets, Boston, Birkhauser, 2002.
[25] M.H. Stone, The theory of representations of Boolean algebras, Transactions of the American Mathematical Society, vol. 40, pp. 37–111, 1936.
[26] K.V. Thomas, L.S. Nair, Quotient of ideals of an intuitionistic fuzzy lattice, Advances in Fuzzy Systems, 2010.
[27] K.V. Thomas, L.S. Nair, Intuitionistic fuzzy sublattices and ideals, Fuzzy Information and Engineering, vol. 3, pp. 321–331, 2011.
[28] K.V. Thomas, L.S. Nair, Rough intuitionistic fuzzy sets in a lattice, International Mathematical Forum, vol. 6, pp. 1327-1335, 2011.
[29] B.K. Tripathy, M.K. Satapathy, P.K. Choudhury, Intuitionistic fuzzy lattices and intuitionistic fuzzy Boolean algebras, International Journal of Engineering and Technology, vol. 5, pp. 2352–2361, 2013.
[30] B. Van Gasse, G. Deschrijver, C. Cornelis, E.E. Kerre, Filters of residuated lattices and triangle algebras, Information Sciences, vol. 6, pp. 3006–3020, 2010.
[31] S. Willard, General Topology, Boston, Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.
[32] L.A. Zadeh, Fuzzy sets, Information and Control, vol. 8, pp. 331–352, 1965.
[33] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, vol. 3, pp. 177–200, 1971.
[34] L. Zedam, A. Amroune, B. Davvaz, Szpilrajn theorem for intuitionistic fuzzy orderings, Annals of Fuzzy Mathematics and Informatics, vol. 9(5), pp. 703–718, 2015.
[35] L. Zedam, S. Milles, E. Rak, The fixed point property for intuitionistic fuzzy lattices, Fuzzy Information and Engineering, Vol. 9 (3), pp. 359-380, 2017.