International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 4 , PP: 80-100, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Ideals and filters on intuitionistic fuzzy lattices

Abdelhamid Bennoui 1 , Soheyb Milles 2 , Lemnaouar Zedam 3

  • 1 Department of Mathematics, University Center of Barika, Amdoukal Road, Barika, 05001, Algeria - (abdelhamid.bennoui@cu-barika.dz)
  • 2 Department of Mathematics, University Center of Barika, Amdoukal Road, Barika, 05001, Algeria - (soheyb.milles@cu-barika.dz)
  • 3 University of M’sila, University Pole, Road Bourdj Bou Arreiridj, M’sila 28000, Algeria; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium - (lemnaouar.zedam@univ-msila.dz)
  • Doi: https://doi.org/10.54216/IJNS.250408

    Received: July 05, 2024 Revised: October 23, 2024 Accepted: December 20, 2024
    Abstract

    Based on the concept of Atanassov’s intuitionistic fuzzy set on a universe X, we introduce the concepts of intuitionistic fuzzy ideals and intuitionistic fuzzy filters on an intuitionistic fuzzy lattice. More specifically, we provide characterizations of these concepts in terms of the intuitionistic fuzzy lattice meet and join operations, in terms of some associated fuzzy sets, as well as, in terms of their crisp level sets. Furthermore, we introduce the concepts of prime intuitionistic fuzzy ideals (resp. filters) as interesting kinds, and investigate their various properties and characterizations.

    Keywords :

    Intuitionistic fuzzy set , Intuitionistic fuzzy order relation , Intuitionistic fuzzy ideal , Intuitionistic fuzzy filter

    References

    [1] M. Akram, W. Dudek, Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras, World Applied Sciences Journal, vol. 7(7), pp. 812–819, 2009.

    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Sofia: VII ITKRs Scientific Session, 1983.

    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, pp. 87–96, 1986.

    [4] K. T. Atanassov, Intuitionistic fuzzy sets. New York: Springer-Verlag, Heidelberg, 1999.

    [5] B. Banerjee, DKr. Basnet, Intuitionistic fuzzy sub-rings and ideals, J. Fuzzy Math, vol 11(1), pp. 139– 155, 2003.

    [6] R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, NIFS, vol. 3, pp. 3–11, 1997.

    [7] S. Boudaoud, L. Zedam, S. Milles, Principal intuitionistic fuzzy ideals and filters on a lattice, Discussiones Mathematicae-General Algebra and Application, Vol. 40, pp. 75–88, 2020.

    [8] N. Bourbaki, Topologie g´en´erale. Berlin Heidelberg, Springer-Verlag, 2007.

    [9] P. Burillo, H. Bustince, Intuitionistic fuzzy relations (Part I), Mathware and computing, vol. 2, pp. 5–38, 1995.

    [10] P. Burillo, H. Bustince, Intuitionistic fuzzy relations (Part II), Effect of Atanassov’s operators on the properties of the bi fuzzy relations, Mathware and computing, vol. 2, pp. 117–148, 1995.

    [11] H. Bustince, P. Burillo, Antisymmetrical intuitionistic fuzzy relation, Order on the referential set induced by a bi-fuzzy relation, Fuzzy Sets and Systems, vol. 2, pp. 17–22, 1995.

    [12] H. Bustince, P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, vol. 3, pp. 293–303, 1996.

    [13] H. Bustince, P. Burillo, Construction of intuitionistic fuzzy relations with predetermined properties, Fuzzy Sets and Systems, vol. 3, pp. 79–403 2003.

    [14] B.A. Davey, H.A. Priestley, Introduction to lattices and order, Second ed. Cambridge, Cambridge University Press, 2002.

    [15] G. Deschrijver, E.E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, vol. 136, pp. 333–361, 2003.

    [16] G.J. Wang, Y.Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, vol. 110, pp. 271–274, 2000.

    [17] K. Hur, S.Y. Jang, H.W. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, vol. 3(1), pp. 72–77, 2003.

    [18] G.Gr¨atzer, General lattice theory, New York, Academic Press, 1978.

    [19] K.H. Kim, Y.B.Jun, Intuitionistic fuzzy interior ideals of semigroups, International Journal of Mathematics and Mathematical Sciences, vol. 27(5), pp. 261–267, 2001.

    [20] I. Mezzomo, B.C. Bedregal, R.H.N. Santiago, Types of fuzzy ideals in fuzzy lattices, Journal of Intelligent and Fuzzy Systems, vol. 28, pp. 929–945, 2015.

    [21] S. Milles, E. Rak, L.Zedam, Intuitionistic fuzzy complete lattices, In: Novel Developments in Uncertainty Representation and Processing Advances in Intelligent Systems and Computing, Springer International Publishing Switzerland, vol. 401, pp.149–160, 2016.

    [22] S. Milles, L. Zedam, E. Rak, Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations, Journal of Fuzzy Set Valued Analysis, vol 2, pp. 143–159, 2017.

    [23] K. Saadaoui, S. Milles, L. Zedam, Fuzzy ideals and fuzzy filters on topologies generated by fuzzy relations, Int. J. Anal. Appl., Vol. 20 (48), 2022.

    [24] B.S. Schr¨oder, Ordered Sets, Boston, Birkhauser, 2002.

    [25] M.H. Stone, The theory of representations of Boolean algebras, Transactions of the American Mathematical Society, vol. 40, pp. 37–111, 1936.

    [26] K.V. Thomas, L.S. Nair, Quotient of ideals of an intuitionistic fuzzy lattice, Advances in Fuzzy Systems, 2010.

    [27] K.V. Thomas, L.S. Nair, Intuitionistic fuzzy sublattices and ideals, Fuzzy Information and Engineering, vol. 3, pp. 321–331, 2011.

    [28] K.V. Thomas, L.S. Nair, Rough intuitionistic fuzzy sets in a lattice, International Mathematical Forum, vol. 6, pp. 1327-1335, 2011.

    [29] B.K. Tripathy, M.K. Satapathy, P.K. Choudhury, Intuitionistic fuzzy lattices and intuitionistic fuzzy Boolean algebras, International Journal of Engineering and Technology, vol. 5, pp. 2352–2361, 2013.

    [30] B. Van Gasse, G. Deschrijver, C. Cornelis, E.E. Kerre, Filters of residuated lattices and triangle algebras, Information Sciences, vol. 6, pp. 3006–3020, 2010.

    [31] S. Willard, General Topology, Boston, Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.

    [32] L.A. Zadeh, Fuzzy sets, Information and Control, vol. 8, pp. 331–352, 1965.

    [33] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, vol. 3, pp. 177–200, 1971.

    [34] L. Zedam, A. Amroune, B. Davvaz, Szpilrajn theorem for intuitionistic fuzzy orderings, Annals of Fuzzy Mathematics and Informatics, vol. 9(5), pp. 703–718, 2015.

    [35] L. Zedam, S. Milles, E. Rak, The fixed point property for intuitionistic fuzzy lattices, Fuzzy Information and Engineering, Vol. 9 (3), pp. 359-380, 2017.

     

    Cite This Article As :
    Bennoui, Abdelhamid. , Milles, Soheyb. , Zedam, Lemnaouar. Ideals and filters on intuitionistic fuzzy lattices. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 80-100. DOI: https://doi.org/10.54216/IJNS.250408
    Bennoui, A. Milles, S. Zedam, L. (2025). Ideals and filters on intuitionistic fuzzy lattices. International Journal of Neutrosophic Science, (), 80-100. DOI: https://doi.org/10.54216/IJNS.250408
    Bennoui, Abdelhamid. Milles, Soheyb. Zedam, Lemnaouar. Ideals and filters on intuitionistic fuzzy lattices. International Journal of Neutrosophic Science , no. (2025): 80-100. DOI: https://doi.org/10.54216/IJNS.250408
    Bennoui, A. , Milles, S. , Zedam, L. (2025) . Ideals and filters on intuitionistic fuzzy lattices. International Journal of Neutrosophic Science , () , 80-100 . DOI: https://doi.org/10.54216/IJNS.250408
    Bennoui A. , Milles S. , Zedam L. [2025]. Ideals and filters on intuitionistic fuzzy lattices. International Journal of Neutrosophic Science. (): 80-100. DOI: https://doi.org/10.54216/IJNS.250408
    Bennoui, A. Milles, S. Zedam, L. "Ideals and filters on intuitionistic fuzzy lattices," International Journal of Neutrosophic Science, vol. , no. , pp. 80-100, 2025. DOI: https://doi.org/10.54216/IJNS.250408