Volume 25 , Issue 3 , PP: 489-500, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Ayser Nasir Tahat 1 * , Jafar Husni Ahmed 2 , Ayman Hazaymeh 3
Doi: https://doi.org/10.54216/IJNS.250340
In this study, a rational cubic Ball function has been used to preserve the shape of monotonic and convex data. Conditions for shape preservation were drawn from the data and imposed on the free parameters of the interpolant function in such a way as to preserve the shape of the data. The interpolant is C1, which is continuous and visually pleasant function. The outputs of a number of numerical examples are presented.
Interpolation , Rational Ball function , Monotonic curve , Convexity preserving
[1] Tahat, A. N. H., Piah, A. R. M., & Yahya, Z. R. (2015). Shape preserving data interpolation using rational cubic Ball functions. Journal of Applied Mathematics, 2015(1), 908924.
[2] Tahat, A. N. H., Piah, A. R. M., & Yahya, Z. R. (2015, October). Positivity preserving curves using rational cubic Ball interpolant. In AIP Conference Proceedings (Vol. 1682, No. 1). AIP Publishing.
[3] A. N. Tahat. (2019),Shape Preserving Curves and Surfaces Interpolation: State of the Art. IOSR Journal of Mathematics, 15 (4) Ser. II,20-24.
[4] Hussain, M.Z. and Hussain, M. (2007) Visualization of data preserving monotonicity. Applied Mathematics and Computation, 190, 1353-64.
[5] Delbourgo, R. and Gregory, J. (1985) Shape preserving piecewise rational interpolation. SIAM journal on scientific and statistical computing, 6, 967-76.
[6] A. N. H. Tahat, A. R. M. Piah, Z. R. Yahya. (2015), Rational cubicBall curves for monotone data, in: The 23rd National Symposium on Mathematical Sciences (SKSM23), AIP Publishing,.
[7] Abbas, M., Majid, A.A., Awang, M.N.H. and Ali, J.M, Monotonicity preserving interpolation using rational spline. Proceedings of the International MultiConference of Engineers and Computer Scientists, 17-19 March 2010, Hong Kong,
[8] Tian, M. (2011) Monotonicity-Preserving Piecewise Rational Cubic Interpolation. Journal of math. Analysis, 5, 99-104.
[9] Piah, A.R.M. and Unsworth, K. (2011) Improved sufficient conditions for monotonic piecewise rational quartic interpolation. Sains Malaysiana, 40, 1173-78.
[10] Wanga, Q. and Tana, J. (2004) Rational Quartic Spline Involving Shape Parameters.
[11] Piah, A.R.M. and Unsworth, K. (2013) Monotonicity Preserving Rational Cubic Ball Interpolation. Preprint.
[12] SumbalShaikh, T., Sarfraz, M. and ZawwarHussain, M. (2012) Shape Preserving Positive and Convex Data Visualization using Rational Bi-cubic Functions. Pakistan Journal of Statistics & Operation Research, 8.
[13] Sarfraz, M. (1992) Convexity preserving piecewise rational interpolation for planar curves. Bull. Korean Math. Soc, 29, 193-200.
[14] Hussain, M., Hussain, M.Z. and Sarfraz, M. (2013) Data Visualization using Spline Functions. Pak. j.stat. oper.res., 9, 181-203.
[15] Abbas, M., Abd Majid, A., Hj Awang, M.N. and Md Ali, J. (2012) Local Convexity Shape-Preserving Data Visualization by Spline Function. ISRN Mathematical Analysis, 2012, 14.
[16] Brodlie, K. and Butt, S. (1991) Preserving convexity using piecewise cubic interpolation. Computers & Graphics, 15, 15-23.
[17] Karim, S.A.A. and Piah, A.R.M. (2009) Rational Generalised Ball Functions for Convex Interpolating Curves. Journal of Quality Measurement and Analysis (JQMA), 5, 75-84.
[18] Sarfraz, M., Hussain, M.Z. and Hussain, M. (2012) Shape-preserving curve interpolation. International Journal of Computer Mathematics, 89, 35-53.
[19] Sarfraz, M. (2002) Visualization of positive and convex data by a rational cubic spline interpolation. Information Sciences, 146, 239-54.
[20] Ali, J.M., Hassan, H.M. and Ahmad, A, Visualize scientific data using rational cubic. In: Regional Conference on Ecological and Environmental Modeling(ECOMOD),15-16 September 2004, Penang, Malaysia2004.
[21] Tahat, A.N., Piah, A.R.M. and Yahya, Z, Positivity preserving rational cubic Ball constrained interpolation. Proceedings of the national symposium on mathematical sciences,6-8 November 2013, penang, Malaysia.
[22] Hazaymeh, A., Saadeh, R., Hatamleh, R., Alomari, M. W., Qazza, A. (2023). A perturbed Milne’s quadrature rule for n-times differentiable functions with Lp-error estimates. Axioms, 12(9), 803.
[23] Hazaymeh, A., Qazza, A., Hatamleh, R., Alomari, M. W., &Saadeh, R. (2023). On further refinements of numerical radius inequalities. Axioms, 12(9), 807.
[24] Bataihah, A. Some fixed point results with application to fractional differential equation via new type of distance spaces. [25] Bataihah, A., & Qawasmeh, T. (2024). A new type of distance spaces and fixed point results. Journal of Mathematical Analysis, 15(4).
[26] R.Hatamleh.(2024). On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System, International Journal of Neutrosophic Science, 25 (3), 25-36.
[27] Hassan, N., & Al-Qudah, Y. (2019, April). Fuzzy parameterized complex multi-fuzzy soft set. In Journal of Physics: Conference Series (Vol. 1212, p. 012016). IOP Publishing.
[28] Ismail, J. N., Rodzi, Z., Al-Sharqi, F., Hashim, H., & Sulaiman, N. H. (2023). The integrated novel framework: linguistic variables in pythagorean neutrosophic set with DEMATEL for enhanced decision support. Int. J. Neutrosophic Sci, 21(2), 129-141.
[29] Z. M. Rodzi et al. A DEMATEL Analysis of The Complex Barriers Hindering Digitalization Technology Adoption In The Malaysia Agriculture Sector. Journal of Intelligent Systems and Internet of Things, 13(1), 21-30, 2024.
[30] Al-Qudah, Y. (2024). A robust framework for the decision-making based on single-valued neutrosophic fuzzy soft expert setting. International Journal of Neutrosophic Science, 23(2), 195-95.
[31] Al-Qudah, Y. , Al-Sharqi, F. 2023. Algorithm for decision-making based on similarity measures of possibility interval-valued neutrosophic soft setting settings. International Journal of Neutrosophic Science, 22(3), pp. 69–83.
[32] F. Al-Sharqi, Y. Al-Qudah and N. Alotaibi, Decision-making techniques based on similarity measures of possibility neutrosophic soft expert sets. Neutrosophic Sets and Systems, 55(1) (2023), 358-382.
[33] Al-Qudah, Y., Alaroud, M., Qoqazeh, H., Jaradat, A., Alhazmi, S. E., & Al-Omari, S. (2022). Approximate analytic–numeric fuzzy solutions of fuzzy fractional equations using a residual power series approach. Symmetry, 14(4), 804.
[34] Al-Qudah, Y., Jaradat, A., Sharma, S. K., & Bhat, V. K. (2024). Mathematical analysis of the structure of one-heptagonal carbon nanocone in terms of its basis and dimension. Physica Scripta, 99(5), 055252.
[35] Al-Qudah, Y., & Ganie, A. H. (2023). Bidirectional approximate reasoning and pattern analysis based on a novel Fermatean fuzzy similarity metric. Granular Computing, 8(6), 1767-1782.
[36] Al-Qudah, Y., Al-Sharqi, F., Mishlish, M., & Rasheed, M. M. (2023). Hybrid integrated decision-making algorithm based on AO of possibility interval-valued neutrosophic soft settings. International Journal of Neutrosophic Science, 22(3), 84 - 98.
[37] Al Qudah, Y., Ganie, A.H. & Hamadameen, A.O. A spherical fuzzy knowledge measure with its application in the identification of the best hazardous waste transportation firm. International Journal of Information Technology. (2024). https://doi.org/10.1007/s41870-024-02200-6
[38] Al-Qudah, Y., Hassan, N. Fuzzy parameterized complex multi-fuzzy soft expert sets. AIP Conference Proceedings, 2019, 2111, 020022 .DOI:10.1063/1.5111229
[39] Ganie, A.H., Gheith, N.E.M., Al-Qudah, Y., ... Aqlan, A.M., Khalaf, M.M. An Innovative Fermatean Fuzzy Distance Metric With its Application in Classification and Bidirectional Approximate Reasoning. IEEE Access, 2024, 12, pp. 4780–4791 .DOI:10.1109/ACCESS.2023.3348780
[40] Zail, S. H., Abed, M. M., & Faisal, A. S. (2022). Neutrosophic BCK-algebra and Ω-BCK-algebra. International Journal of Neutrosophic Science, 19(3), 8-15.
[41] Abed, M. M., Al-Sharqi, F., & Zail, S. H. (2021, March). A certain conditions on some rings give pp ring. In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012068). IOP Publishing
[42] Abed, M. M., Hassan, N., & Al-Sharqi, F. (2022). On neutrosophic multiplication module. Neutrosophic Sets and Systems, 49(1), 198-208.
[43] Abed, M. M., & Al-Sharqi, F. G. (2018, May). Classical Artinian module and related topics. In Journal of Physics: Conference Series (Vol. 1003, No. 1, p. 012065). IOP Publishing.