Volume 2 , Issue 2 , PP: 82-88, 2020 | Cite this article as | XML | Html | PDF | Full Length Article
M. Parimala 1 * , M. Karthika 2 , Florentin Smarandache 3 , Said Broumi 4
The aim of this paper is to introduce the notion of neutrosophic αω-closed sets and study some of the prop-erties of neutrosophic αω-closed sets. Further, we investigated neutrosophic αω- continuity, neutrosophic αω-irresoluteness, neutrosophic αω connectedness and neutrosophic contra αω continuity along with exam-ples.
neutrosophic topology, neutrosophic &alpha , &omega , -closed set, neutrosophic &alpha , &omega , -continuous function and neutrosophic contra &alpha , &omega , -continuous mappings.
[1] W. Al-Omeri,” Neutrosophic crisp Sets via Neutrosophic crisp Topological Spaces,” Neutrosophic Sets and Systems 13, 1, pp.96-105, 2016.
[2] W. Al-Omeri,F. Smarandache,” New Neutrosophic Sets via Neutrosophic Topological Spaces. In Neu-trosophic Operational Research; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Bel-gium, 2017; Volume I, pp. 189-209.
[3] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala,” On some new notions and functions in neu-trosophic topological spaces,” Neutrosophic Sets and Systems, Volume 16, pp.16-19, 2017.
[4] K. Atanassov,” intuitionstic fuzzy sets,” Fuzzy sets and systems, 20, pp.87-96,1986.
[5] K. Atanassov,” Review and new results on Intuitionistic fuzzy sets,” Preprint IM-MFAIS-1-88, Sofia, 1988.
[6] K. Atanassov and S. Stoeva. Intuitionistic fuzzy sets, in: Polish Syrup. on Interval and Fuzzy Mathe-matics, Poznan,pp.23-26, 1983.
[7] R. Devi and M. Parimala,” On Quasi αω-Open Functions in Topological Spaces, Applied Mathematical Sciences, Vol 3, No 58, pp.2881 - 2886, 2009.
[8] M. Karthika, M. Parimala, Saeid Jafari, Florentin Smarandache, Mohammed Alshumrani, Cenap Ozel and R. Udhayakumar,” Neutrosophic complex αψ connectedness in neutrosophic complex topological spaces,”Neutrosophic Sets and Systems, 29, pp.158-164, 2019.
[9] M. Parimala and R. Devi,” Fuzzy αω-closed sets,” Annals of Fuzzy Mathematics and Informatics Vol-ume 6, No. 3, pp.625-632, 2013.
[10] M. Parimala and R. Devi,” Intuitionistic fuzzy αω-connectedness between intuitionistic fuzzy sets,” International Journal of Mathematical Archive-3(2), pp.603 - 607, 2012.
[11] M. Parimala, M. Karthika, R. Dhavaseelan, S. Jafari,” On neutrosophic supra pre-continuous func-tions in neutrosophic topological spaces,” New Trends in Neutrosophic Theory and Applications, Vol 2, pp.371-383, 2018.
[12] M. Parimala, M. Karthika, S. Jafari, F. Smarandahe and R. Udhayakumar,”Decision-Making via Neu-trosophic Support Soft Topological Spaces,” symmetry, 10, pp.2-10, 2018.
[13] M. Parimala, M. Karthika, S. Jafari, F. Smarandache, and R. Udhayakumar,”Neutrosophic Nano ideal topolgical structure,” Neutrosophic sets and systems,24, pp.70-76, 2018.
[14] M. Parimala, M. Karthika, Saeid Jafari, Florentin Smarandache and A.A. El-Atik,”Neutrosophic αψ-connectedness,Journal of Intelligent & Fuzzy Systems, 38, pp.853–857, 2020.
[15] A. A. Salama and S. A. Alblowi,” Neutrosophic Set and Neutrosophic Topological Spaces,” IOSR Jour-nal of Mathematics, Volume 3, Issue 4, pp. 31-35,2012.
[16] F. Smarandache,” Neutrosophy and Neutrosophic Logic, First International Conference on Neutros-ophy,” Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002).
[17] F. Smarandache,” A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability,” American Research Press, Rehoboth, NM, 1999.
[18] D. Coker,” An introduction to intuitionistic fuzzy topological spaces,” Fuzzy sets and systems, 88, pp.81-89, 1997.
[19] L.A. Zadeh, ” Fuzzy Sets,” Information and Control, 18, pp.338-353,1965