Volume 24 , Issue 1 , PP: 51-64, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
R. Rajakumari 1 * , KR. Balasubramanian 2 , A. Vadivel 3
Doi: https://doi.org/10.54216/IJNS.240105
This work presents the concept of interval-valued neutrosophic INK-subalgebras, also known as IV N INKsubalg’s, which are the level and strong level neutrosophic INK-subalgebras. Next, we establish and validate a few theorems that establish the connection between these concepts and neutrosophic INK-subalgebras. We define the images and inverse images of IV N INK-subalgebras and study the transformations of the homomorphic images and inverse images of interval valud neutrosophic (briefly, IV N) INK-subalgebra into IV N INK-subalgebras.
interval valued neutrosophic set , neutrosophic INK-subalgebra and interval valued neutrosophic INK-subalgebra.
[1] Imai, Y.; Is´eki, K. On axiom systems of propositional calculi. XIV. Proc. Japan Academy 1996.
[2] Is´eki, K.; Tanaka, T. An introduction to the theory of BCK-algebras. Math. Japonica 1978 Vol 23, pp 1-26.
[3] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V. M. Introduction on INK-algebras. International Journal of Pure and Applied Mathematics 2017, Vol 115 (9), pp 1-10.
[4] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V. M.; Jocob Kavikumar, Interval-valued fuzzy subalgebra and fuzzy INK-Ideal in INK-algebra. Advances in Algebra and Analysis, Trends in Mathematics, https://doi.org/10.1007/978-3-030-01120-8 3.
[5] Kaviyarasu, M.; Indhira, K. Fuzzy translation on INK-algebra. Jour of Adv Reserch in Dynamical & Control Systems 2019, Vol 11 (10) (SI), pp 938-943.
[6] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V. M., Neutrosophic set in INK-algebra. Advances in Mathematics: Scientific Journal 2020, Vol 9 (7), pp 4345-4352.
[7] Mostafa, S. M. Fuzzy implicative ideal in BCK-algebras. Fuzzy Sets and Systems 1997. https://doi.org/S0168-0114 (96) 00017-6
[8] Neggers, J.; Kim, H. S. On d-algebras. Math. Slovaca 1999, Vol 49, pp 19-26.
[9] Sung Min Hong; Young Bae Jun, Anti fuzzy ideals in BCK-algebras. Kyungpook Math. J. 1998, Vol 38, pp 145-150.
[10] Zadeh, L. A. Fuzzy sets. Information and Control 1965, Vol 8. Available via Dialog https: //doi.org/10.1016/ S0019-99581 (65) 90241-X, cited 30 June 1965.