International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 4 , PP: 244-257, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Multipolar neutrosophic subalgebras/ideals of UP-algebras

V. Rajam 1 , N. Rajesh 2 *

  • 1 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India - (rajamramv@gmail.com)
  • 2 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India - (nrajesh topology@yahoo.co.in)
  • Doi: https://doi.org/10.54216/IJNS.230419

    Received: June 11, 2023 Revised: January 15, 2024 Accepted: March 13, 2024
    Abstract

    The notion of neutrosophic m-polar fuzzy sets is much wider than the notion of m-polar fuzzy sets. In this paper, we apply the theory of neutrosophic m-polar fuzzy set on UP-algebras. We introduce the concepts of neutrosophic m-polar fuzzy subalgebras, neutrosophic m-polar fuzzy ideals and neutrosophic m-polar fuzzy strong ideals and some essential properties are discussed. We characterize neutrosophic m-polar fuzzy subalgebras in terms of fuzzy subalgebras and subalgebras of UP-algebras.

    Keywords :

    Neutrosophic m-polar fuzzy sets , neutrosophic m-polar fuzzy subalgebras , neutrosophic m-polar fuzzy ideals

    References

    [1] J. Chen, S. Li, S. Ma and X. Wang, m-Polar fuzzy sets: an extension of bipolar fuzzy sets. Sci. World J., 2014, 8. Article Id 416530.

    [2] T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23, 2 (2017), 1-19.

    [3] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5, 1 (2017), 35-54. 40, 1 (2019), 60-66.

    [4] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12, 6 (2016), 739-756.

    [5] G. J.Wang, Non-classical Mathematical Logic ans approximate Reasoning, Science Press, Beijing, 1994.

    [6] L. A. Zadeh, From circuit theory to system theory, Proc. Inst. Radio Eng. 50 (1962), 856-865.

    [7] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

    [8] L. A. Zadeh, Toward a generalized theory of uncertainty (GTU) - an outline, Inform. Sci. 172 (2005), 1-40.

    Cite This Article As :
    Rajam, V.. , Rajesh, N.. Multipolar neutrosophic subalgebras/ideals of UP-algebras. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 244-257. DOI: https://doi.org/10.54216/IJNS.230419
    Rajam, V. Rajesh, N. (2024). Multipolar neutrosophic subalgebras/ideals of UP-algebras. International Journal of Neutrosophic Science, (), 244-257. DOI: https://doi.org/10.54216/IJNS.230419
    Rajam, V.. Rajesh, N.. Multipolar neutrosophic subalgebras/ideals of UP-algebras. International Journal of Neutrosophic Science , no. (2024): 244-257. DOI: https://doi.org/10.54216/IJNS.230419
    Rajam, V. , Rajesh, N. (2024) . Multipolar neutrosophic subalgebras/ideals of UP-algebras. International Journal of Neutrosophic Science , () , 244-257 . DOI: https://doi.org/10.54216/IJNS.230419
    Rajam V. , Rajesh N. [2024]. Multipolar neutrosophic subalgebras/ideals of UP-algebras. International Journal of Neutrosophic Science. (): 244-257. DOI: https://doi.org/10.54216/IJNS.230419
    Rajam, V. Rajesh, N. "Multipolar neutrosophic subalgebras/ideals of UP-algebras," International Journal of Neutrosophic Science, vol. , no. , pp. 244-257, 2024. DOI: https://doi.org/10.54216/IJNS.230419