International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 3 , PP: 77-86, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Innovative Perspective on Neutrosophic Cubic Z-Algebras

G. Nisha Devi 1 * , P. Hemavathi 2 , R. Vinodkumar 3 , P. Muralikrishna 4 , Aiyared Iampan 5

  • 1 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602105, India - (nishadevig9005.sse@saveetha.com)
  • 2 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602105, India - (hemavathip.sse@saveetha.com)
  • 3 Department of Mathematics, Prathyusha Engineering College (Autonomous), Thiruvallur-602025, India - (vinodmaths85@gmail.com)
  • 4 Department of Mathematics, Muthurangam Government Arts College, Vellore-632002, India - (pmkrishna@rocketmail.com)
  • 5 Department of Mathematics, School of Science, University of Phayao, 19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • Doi: https://doi.org/10.54216/IJNS.230307

    Received: August 25, 2023 Revised: November 28, 2023 Accepted: January 24, 2024
    Abstract

    This study explores an innovative perspective on neutrosophic cubic Z-algebras, delving into the theoretical framework within mathematical structures. Through a comprehensive analysis, we uncover unique insights that contribute to the advancement of algebraic methodologies, particularly in handling uncertainties represented by neutrosophic elements. This work aims to present the idea of neutrosophic cubic sets in Z-algebras, as well as the usage of false membership function, truth, and indeterminacy in Z-algebras. Further, the results on -union, -intersection, -union, and -intersection of neutrosophic cubic Z-subalgebras are provided. This paper also discusses homomorphisms of Z-algebras and its associated characteristics.

    Keywords :

    Z-algebra , Z-subalgebra , Cubic set , Cubic Z-subalgebra , Neutrosophic set , Neutrosophic cubic set , Neutrosophic cubic Z-subalgebra.

    References

    [1]       A. Rezaei & F. Smarandache, The neutrosophic triplet of BI-algebras. Neutrosophic Sets and Systems, 33, 313-321, 2020.

    [2]       M. A. A. Ansari & M. Chandramouleeswaran, Fuzzy β-subalgebras of β-algebras. International Journal of Mathematical Sciences and Engineering Applications, 7(5), 239-249, 2013.

    [3]       H. Bordbar, M. Mohseni Takallo, R. A. Borzooei & Y. B. Jun, BMBJ-Neutrosophic subalgebra in BCI/BCK-algebras. Neutrosophic Sets and Systems, 31, 31-43, 2020.

    [4]       E. A. El-Hamd, H. M. Shamma, M. Saleh & I. El-Khodary, Neutrosophic logic theory and applications. Neutrosophic Sets and Systems, 41, 30-51, 2021.

    [5]       P. Hemavathi, P. Muralikrishna & K. Palanivel, On interval valued intuitionistic fuzzy β-subalgebras. Afrika Matematika, 29(1-2), 249-262, 2018.

    [6]       R. Iqbal, S. Zafar & M. S. Sardar, Neutrosophic cubic subalgebras and neutrosophic cubic closed ideals of B-algebras. Neutrosophic Sets and Systems, 14, 47-60, 2016.

    [7]       Y. B. Jun, C. S. Kim & K. O. Yang, Cubic sets. Annals of Fuzzy Mathematics and Informatics, 4(1), 83-98, 2012.

    [8]       Y. B. Jun, M. S. Kim & S. T. Jung, Cubic subgroups. Annals of Fuzzy Mathematics and Informatics, 2(1), 9-15, 2011.

    [9]       Y. B. Jun, F. Samarandache & C. S. Kim, Neutrosophic cubic sets. New Mathematics and Natural Computation, 3(1), 45-54, 2017.

    [10]    Y. B. Jun, F. Samarandache & C. S. Kim, Neutrosophic subalgebras of several types in BCK/BCI-algebras. Annals of Fuzzy Mathematics and Informatics, 14(1), 75-86, 2017.

    [11]    Y. B. Jun, S.-Z. Song & S. J. Kim, Cubic interval-valued intuitionistic fuzzy sets and their application in BCK/BCI-algebras. Axioms, 7(1), 7, 2018.

    [12]    J. Awolola, A note on the concept of α-level sets of neutrosophic set. Neutrosophic Sets and Systems, 31, 120-126, 2020.

    [13]    P. K. Maji, Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1), 157-168, 2013.

    [14]    M. Khalid, F. Smarandache, N. A. Khalid & S. Broumi, Translative and multiplicative interpretation of neutrosophic cubic set. Neutrosophic Sets and Systems, 35, 299-339, 2020.

    [15]    M. Khalid & N. A. Khalid, T-MBJ Neutrosophic set under M-subalgebra. Neutrosophic Sets and Systems, 38, 423-438, 2020.

    [16]    M. Khalid, N. A. Khalid & S. Broumi, T-Neutrosophic cubic set on BF-algebra. Neutrosophic Sets and Systems, 31, 127-147, 2020.

    [17]    P. Muralikrishna, R. Vinodkumar & G. Palani, Some aspects on cubic fuzzy β-subalgebra of β-algebra. Journal of Physics: Conference Series, 1597, 012018, 2020.

    [18]    T. Nanthini & A. Pushpalatha, Interval valued neutrosophic topological spaces. Neutrosophic Sets and Systems, 32, 52-60, 2020.

    [19]    J. Neggers & H. S. Kim, On β-algebras. Mathematica Slovaca, 52(5), 517-530, 2002.

    [20]    P. Muralikrishna & S. Manokaran, MBJ-Neutrosophic β-ideal of β-algebra. Neutrosophic Sets and Systems, 35, 99-118, 2020.

    [21]    R. A. Borzooei, F. Smarandache & Y. B. Jun, Polarity of generalized neutrosophic subalgebras in BCK/BCI-algebras. Neutrosophic Sets and Systems, 32, 123-145, 2020.

    [22]    P. B. Remy & A. Francina Shalini, Neutrosophic vague binary BCK/BCI-algebra, Neutrosophic Sets and Systems, 38, 45-67, 2020.

    [23]    F. Smarandache, Neutrosophic set, a generalization of the intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics, 24, 287-297, 2005.

    [24]    L. A. Zadeh, Fuzzy sets. Information and Control, 8(3), 338-353, 1965.

    Cite This Article As :
    Nisha, G.. , Hemavathi, P.. , Vinodkumar, R.. , Muralikrishna, P.. , Iampan, Aiyared. Innovative Perspective on Neutrosophic Cubic Z-Algebras. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 77-86. DOI: https://doi.org/10.54216/IJNS.230307
    Nisha, G. Hemavathi, P. Vinodkumar, R. Muralikrishna, P. Iampan, A. (2024). Innovative Perspective on Neutrosophic Cubic Z-Algebras. International Journal of Neutrosophic Science, (), 77-86. DOI: https://doi.org/10.54216/IJNS.230307
    Nisha, G.. Hemavathi, P.. Vinodkumar, R.. Muralikrishna, P.. Iampan, Aiyared. Innovative Perspective on Neutrosophic Cubic Z-Algebras. International Journal of Neutrosophic Science , no. (2024): 77-86. DOI: https://doi.org/10.54216/IJNS.230307
    Nisha, G. , Hemavathi, P. , Vinodkumar, R. , Muralikrishna, P. , Iampan, A. (2024) . Innovative Perspective on Neutrosophic Cubic Z-Algebras. International Journal of Neutrosophic Science , () , 77-86 . DOI: https://doi.org/10.54216/IJNS.230307
    Nisha G. , Hemavathi P. , Vinodkumar R. , Muralikrishna P. , Iampan A. [2024]. Innovative Perspective on Neutrosophic Cubic Z-Algebras. International Journal of Neutrosophic Science. (): 77-86. DOI: https://doi.org/10.54216/IJNS.230307
    Nisha, G. Hemavathi, P. Vinodkumar, R. Muralikrishna, P. Iampan, A. "Innovative Perspective on Neutrosophic Cubic Z-Algebras," International Journal of Neutrosophic Science, vol. , no. , pp. 77-86, 2024. DOI: https://doi.org/10.54216/IJNS.230307