International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 22 , Issue 3 , PP: 128-134, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

The General Exponential form of a Symbolic Plithogenic Complex Numbers

Yaser Ahmad Alhasan 1 * , Raja Abdullah Abdulfatah 2 , Suliman Sheen 3

  • 1 Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, SaudiArabia - (y.alhasan@psau.edu.sa)
  • 2 Deanship the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia - (r.abdulfatah@psau.edu.sa)
  • 3 Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, SaudiArabia - (S.almleh@psau.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.220309

    Received: May 09, 2023 Revised: July 03, 2023 Accepted: October 12, 2023
    Abstract

    In this study, we defined a symbolic plithogenic complex number's general exponential form. A symbolic plithogenic complex number's general trigonometric form was defined. Theories have been supported by evidence showing how to find the general exponential form's conjugate for symbolic plithogenic complex numbers, division for symbolic plithogenic complex numbers, multiplication for two symbolic plithogenic complex numbers, and inversion for symbolic plithogenic complex numbers.

    Keywords :

    symbolic plithogenic complex numbers , trigonometric form , the exponential form.

    References

    [1] F. Smarandache, " Introduction to the Symbolic Plithogenic Algebraic Structures (revisited)". Neutrosophic Sets and Systems, Volume 53, PP: 653-665, 2023

    [2] F. Smarandache, "Plithogeny, Plithogenic Set, Logic, Probability, and Statistics", 2017.

    [3] F. Smarandache, "An Overview of Plithogenic Set and Symbolic Plithogenic Algebraic Structures", Journal of Fuzzy Extension and Applications, Volume 4, pp. 48-55, 2023.

    [4] H. Merkepci, and M. Abobala, " On The Symbolic 2-Plithogenic Rings", International Journal of Neutrosophic Science, 2023.

    [5] A. Rawashdeh, "An Introduction To The Symbolic 3-plithogenic Number Theory", Neoma Journal Of Mathematics and Computer Science, 2023.

    [6] M. Abobala, and A. Allouf, " On A Novel Security Scheme for The Encryption and Decryption Of 2×2 Fuzzy Matrices with Rational Entries Based on The Algebra of Neutrosophic Integers and El-Gamal Crypto-System", Neutrosophic Sets and Systems, vol.54, 2023.

    [7] M. B. Zeina, N. Altounji, M. Abobala, and Y. Karmouta, “Introduction to Symbolic 2-Plithogenic Probability Theory,” Galoitica: Journal of Mathematical Structures and Applications, vol. 7, no. 1, 2023.

    [8] Y. Alhasan, and R. Abdulfatah, " The Symbolic Plithogenic Complex Numbers", International Journal of Neutrosophic Science, vol. 22, no. 2, 2023.

    Cite This Article As :
    Ahmad, Yaser. , Abdullah, Raja. , Sheen, Suliman. The General Exponential form of a Symbolic Plithogenic Complex Numbers. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 128-134. DOI: https://doi.org/10.54216/IJNS.220309
    Ahmad, Y. Abdullah, R. Sheen, S. (2023). The General Exponential form of a Symbolic Plithogenic Complex Numbers. International Journal of Neutrosophic Science, (), 128-134. DOI: https://doi.org/10.54216/IJNS.220309
    Ahmad, Yaser. Abdullah, Raja. Sheen, Suliman. The General Exponential form of a Symbolic Plithogenic Complex Numbers. International Journal of Neutrosophic Science , no. (2023): 128-134. DOI: https://doi.org/10.54216/IJNS.220309
    Ahmad, Y. , Abdullah, R. , Sheen, S. (2023) . The General Exponential form of a Symbolic Plithogenic Complex Numbers. International Journal of Neutrosophic Science , () , 128-134 . DOI: https://doi.org/10.54216/IJNS.220309
    Ahmad Y. , Abdullah R. , Sheen S. [2023]. The General Exponential form of a Symbolic Plithogenic Complex Numbers. International Journal of Neutrosophic Science. (): 128-134. DOI: https://doi.org/10.54216/IJNS.220309
    Ahmad, Y. Abdullah, R. Sheen, S. "The General Exponential form of a Symbolic Plithogenic Complex Numbers," International Journal of Neutrosophic Science, vol. , no. , pp. 128-134, 2023. DOI: https://doi.org/10.54216/IJNS.220309