International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 21 , Issue 4 , PP: 135-145, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices

M. Anandhkumar 1 * , T. Harikrishnan 2 , S. M. Chithra 3 , V. Kamalakannan 4 , B. Kanimozhi 5 , Broumi Said 6

  • 1 Department of Mathematics, IFET College of Engineering (Autonomous), Villupuram, Tamilnadu, India - (anandhkumarmm@gmail.com)
  • 2 Department of Mathematics, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Tamilnadu, India - (mokshihari2009@gmail.com)
  • 3 Department of Mathematics, R.M.K College of Engineering and Technology Chennai, Tamilnadu, India - (chithra.sm@rmkcet.ac.in)
  • 4 Department of Mathematics, Panimalar Engineering College, Chennai, Tamilnadu, India - (vkamalakannan@panimalar.ac.in)
  • 5 Department of Mathematics, Sri Manakula Vinayagar Engineering College (Autonomous), Madagadipet, Puducherry, India - (kanigopi.a20@gmail.com)
  • 6 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco - (broumisaid78@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.210413

    Received: February 22, 2023 Revised: May 29, 2023 Accepted: July 23, 2023
    Abstract

    In this paper, we introduce the concept of reverse sharp ordering on Neutrosophic Fuzzy matrix (NFM) as a special case of minus ordering. We also introduce the concept of reverse left-T and right-T orderings for NFM as an analogue of left-star and right-star partial orderings for complex matrices. Several properties of these ordering are derived. We show that these ordering preserve its Moore-penrose inverse property. Finally, we show that these ordering are identical for certain class of NFM.

    Keywords :

    Neutrosophic fuzzy matrices , Reverse sharp ordering , Reverse left-T and right-T ordering , g-inverse , Moore-penrose inverses.

    References

    [1] Atanassov, K., (1983), Intuitionistic Fuzzy Sets, Fuzzy Sets and System., 20, pp. 87- 96.

    [2] Atanassov, K., (2005), Intuitionistic fuzzy implications and modus ponens, In Notes on Intuitionistic Fuzzy Sets., 11(1), pp. 1–5.

    [3] Atanassov, K., (2005), On some types of fuzzy negations, In Notes on Intuitionistic Fuzzy Sets., 11(4), pp. 170–172.

    [4] Jian Miao Chen., (1982), Fuzzy matrix partial orderings and generalized inverses, Fuzzy sets sys., 105, pp. 453 – 458.

    [5] Meenakshi, AR., Inbam, C., (2004), The minus partial order in Fuzzy matrices, The Journal of Fuzzy matrices., 12 (3), pp. 695 - 700.

    [6] Meenakshi, AR., (2008), Fuzzy matrix – Theory and its applications, MJP Publishers.

    [7] Muthu Guru Packiam, K., Krishna Mohan, K.S., (2019), Partial orderings on k−idempotent fuzzy matrices., 15(5), pp. 733-741.

    [8] Padder, R. A., Murugadas, P., (2022), Algorithm for controllable and nilpotent intuitionistic fuzzy matrices, Afr. Mat., 33(3), pp.84.

    [9] Padder, R. A., Murugadas, P., (2019), Determinant theory for intuitionistic fuzzy matrices, Afr. Mat., 30, pp.943–955.

    [10] Punithavalli, G., ( 2020), The Partial Orderings of m-Symmetric Fuzzy Matrices, International journal of Mathematics Trends and Technology., 66(4), pp.705-803.

    [11] Punithavalli, G., Anandhkumar, M., (2022) , Partial Orderings On K−Idempotent Intuitionistic Fuzzy Matrices., 54(2), pp.2096-3246.

    [12] Pradhan, R., Pal, M., (2014), The generalized inverse of Atanassov’s intuitionistic fuzzy matrices, International Journal of Computational Intelligence Systems., 7(6), pp.1083-1095.

    [13] Shyamal, A. K., Pal, M., (2002), Distance between intuitionistic fuzzy matrices, V.U.J. Physical Sciences., 8, pp.81-91.

     [14] Sriram, S., Murugadas, P., (2010), The Moore-Penrose Inverse of Intuitionistic Fuzzy Matrices Int. Journal of Math. Analysis., 4( 36), pp. 1779 – 1786.

     [15] Thomson, M. G., (1977),  Convergence of  Power of a Fuzzy Matrix, Journal of Mathematical Analysis and Applications., 57, pp.476-480.

     [16] Zadeh, L. A., (1965), Fuzzy Sets, Information and control., 8, pp.338-353.

    [17] Smarandache F (2005) Neutrosophic set—a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math 24(3):287–297

    [18] Wang H, Smarandache F, Zhang YQ, Sunderraman R (2010) Single valued neutrosophic sets. Multispace Multistruct 4:410–413

    [19] M. Anandhk umar, Pseudo Similarity of Neutrosophic Fuzzy matrices, International Journal of Neutrosophic Science, Vol. 20, No. 04, PP. 191-196, 2023

    [20] M. Anandhkumar, On various Inverse of Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 02, PP. 20-31, 2023

    Cite This Article As :
    Anandhkumar, M.. , Harikrishnan, T.. , M., S.. , Kamalakannan, V.. , Kanimozhi, B.. , Said, Broumi. Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 135-145. DOI: https://doi.org/10.54216/IJNS.210413
    Anandhkumar, M. Harikrishnan, T. M., S. Kamalakannan, V. Kanimozhi, B. Said, B. (2023). Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science, (), 135-145. DOI: https://doi.org/10.54216/IJNS.210413
    Anandhkumar, M.. Harikrishnan, T.. M., S.. Kamalakannan, V.. Kanimozhi, B.. Said, Broumi. Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science , no. (2023): 135-145. DOI: https://doi.org/10.54216/IJNS.210413
    Anandhkumar, M. , Harikrishnan, T. , M., S. , Kamalakannan, V. , Kanimozhi, B. , Said, B. (2023) . Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science , () , 135-145 . DOI: https://doi.org/10.54216/IJNS.210413
    Anandhkumar M. , Harikrishnan T. , M. S. , Kamalakannan V. , Kanimozhi B. , Said B. [2023]. Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science. (): 135-145. DOI: https://doi.org/10.54216/IJNS.210413
    Anandhkumar, M. Harikrishnan, T. M., S. Kamalakannan, V. Kanimozhi, B. Said, B. "Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices," International Journal of Neutrosophic Science, vol. , no. , pp. 135-145, 2023. DOI: https://doi.org/10.54216/IJNS.210413