International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 21 , Issue 3 , PP: 154-165, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis

Abderrahmane Bettayeb 1 * , Muhammad Eid Balbaa 2

  • 1 American University in the Emirates, UAE - (Abdul.rahman@aue.ae)
  • 2 Tashkent State University of Economics, Uzbekistan - (m.balbaa@tsue.uz)
  • Doi: https://doi.org/10.54216/IJNS.210315

    Received: February 22, 2023 Revised: May 25, 2023 Accepted: June 27, 2023
    Abstract

    The revolutionary breakthroughs of artificial intelligence (AI) are swiftly and extensively invading many domains of human activity, serving as the central driving force of the next wave of informatization progress and industrial revolution. Although artificial intelligence (AI) technology and apps have been extensively explored, and variables affecting AI acceptance have been found, the influence of success factors on the acceptance of AI is still unclear. Thus, this study presents a methodology to investigate the effects of gadgets, organizations, and ecosystems on the acceptance of AI in Human Resource Management (HRM) in the UAE. This study used a neutrosophic set (NS) to overcome the vague information. The NS is integrated with the AHP method to rank the success factors in adopting AI in HRM in UAE. The AHP method is used to give importance to these factors. This study used 12 factors in UAE to rank it by the N-AHP.

    Keywords :

    Human Resource Management , Neutrosophic Set , AHP , AI.

    References

    [1]       H. Chen, L. Li, and Y. Chen, “Explore success factors that impact artificial intelligence adoption on telecom industry in China,” J. Manag. Anal., vol. 8, no. 1, pp. 36–68, 2021.

    [2]       M. Dora, A. Kumar, S. K. Mangla, A. Pant, and M. M. Kamal, “Critical success factors influencing artificial intelligence adoption in food supply chains,” Int. J. Prod. Res., vol. 60, no. 14, pp. 4621–4640, 2022.

    [3]       S. Chowdhury et al., “Unlocking the value of artificial intelligence in human resource management through AI capability framework,” Hum. Resour. Manag. Rev., vol. 33, no. 1, p. 100899, 2023.

    [4]       H. A. H. A. Almarashda, I. Bin Baba, A. A. Ramli, A. H. Memon, and I. A. Rahman, “Human Resource Management and Technology Development in Artificial Intelligence Adoption in the UAE Energy Sector.,” J. Appl. Eng. Sci., vol. 11, no. 2, 2021.

    [5]       P. Hamm and M. Klesel, “Success Factors for the Adoption of Artificial Intelligence in Organizations: A Literature Review.,” in AMCIS, 2021.

    [6]       S. V Shet, T. Poddar, F. W. Samuel, and Y. K. Dwivedi, “Examining the determinants of successful adoption of data analytics in human resource management–A framework for implications,” J. Bus. Res., vol. 131, pp. 311–326, 2021.

    [7]       M. Tuffaha and M. Perello-Marin, “Artificial Intelligence definition, applications and adoption in Human Resource Management: A systematic literature review,” Int. J. Bus. Innov. Res. doi, vol. 10, 2021.

    [8]       E. Kambur and C. Akar, “Human resource developments with the touch of artificial intelligence: a scale development study,” Int. J. Manpow., vol. 43, no. 1, pp. 168–205, 2022.

    [9]       A. Agarwal, “AI adoption by human resource management: a study of its antecedents and impact on HR system effectiveness,” foresight, 2022.

    [10]     Y. Suseno, C. Chang, M. Hudik, and E. S. Fang, “Beliefs, anxiety and change readiness for artificial intelligence adoption among human resource managers: the moderating role of high-performance work systems,” Int. J. Hum. Resour. Manag., vol. 33, no. 6, pp. 1209–1236, 2022.

    [11]     D. Vrontis, M. Christofi, V. Pereira, S. Tarba, A. Makrides, and E. Trichina, “Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review,” Int. J. Hum. Resour. Manag., vol. 33, no. 6, pp. 1237–1266, 2022.

    [12]     R. Pillai and B. Sivathanu, “Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations,” Benchmarking An Int. J., vol. 27, no. 9, pp. 2599–2629, 2020.

    [13]     A. Margherita, “Human resources analytics: A systematization of research topics and directions for future research,” Hum. Resour. Manag. Rev., vol. 32, no. 2, p. 100795, 2022.

    [14]     B. I. Hmoud and L. Várallyai, “Artificial intelligence in human resources information systems: Investigating its trust and adoption determinants,” Int. J. Eng. Manag. Sci., vol. 5, no. 1, pp. 749–765, 2020.

    [15]     M. Yucesan and M. Gul, “Failure modes and effects analysis based on neutrosophic analytic hierarchy process: method and application,” Soft Comput., vol. 25, no. 16, pp. 11035–11052, 2021.

    [16]     M. V. Alava, S. P. D. Figueroa, H. M. B. Alcivar, and M. L. Vázquez, Single valued neutrosophic numbers and analytic hierarchy process for project selection. Infinite Study, 2018.

    [17]     A. Vafadarnikjoo, H. Badri Ahmadi, J. J. H. Liou, T. Botelho, and K. Chalvatzis, “Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process,” Ann. Oper. Res., pp. 1–28, 2021.

    [18]     A. Singh, A. Das, U. K. Bera, and G. M. Lee, “Prediction of transportation costs using trapezoidal neutrosophic fuzzy analytic hierarchy process and artificial neural networks,” IEEE Access, vol. 9, pp. 103497–103512, 2021.

    [19]     Ahmed M. Ali, Ranking Renewable Energy Alternatives by using Triangular Neutrosophic Sets Integrated with MCDM, Journal of Neutrosophic and Information Fusion, Vol. 1 , No. 1 , (2023) : 17-26 (Doi   :  https://doi.org/10.54216/NIF.010102)

    [20]     D. J. Y. Tey et al., “A novel neutrosophic data analytic hierarchy process for multi-criteria decision making method: A case study in kuala lumpur stock exchange,” IEEE Access, vol. 7, pp. 53687–53697, 2019.

    [21]     C. P. Cisneros Zúñiga, R. C. Jiménez Martínez, and L. R. Miranda Chávez, “Neutrosophic Analytic Hierarchy Process for the Control of the Economic Resources Assigned as Alimony.,” Neutrosophic Sets Syst., vol. 37, 2020.

    [22]     C. P. C. Zúñiga, R. C. J. Martínez, and L. R. M. Chávez, Neutrosophic Analytic Hierarchy Process for the Control of the Economic Resources Assigned as Alimony, vol. 37. Infinite Study, 2020.

    [23]     Abduallah Gamal,Nehal Nabil Mostafa, Sustainable Supplier Selection using Neutrosophic Sets and MCDM Framework, Journal of Neutrosophic and Information Fusion, Vol. 1 , No. 1 , (2023) : 27-33 (Doi   :  https://doi.org/10.54216/NIF.010103)

    [24]    E. Aydın, & M. Turan (2023). An AI-Based Shortlisting Model for Sustainability of Human Resource Management. Sustainability, 15(3), 2737. MDPI AG. Retrieved from (Doi   :  https://doi.org/10.3390/su15032737)

    [25]   D. Chen, JP. Esperança & S. Wang (2022). The Impact of Artificial Intelligence on Firm Performance: An Application of the Resource-Based View to e-Commerce Firms. Front. Psychol. 13:884830. (Doi   :  https://doi.org/10.3389/fpsyg.2022.884830)

    [26]    T. Jacob Fernandes França, H. São Mamede, J.M. Pereira Barroso, & V.M. Pereira Duarte Dos Santos (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. (Doi   :  https://doi.org/10.1016/j.heliyon.2023.e14694)

    [27]  Q. Jia, Y. Guo, R. Li, YR. Li, & Y.W. Chen (2018). A conceptual artificial intelligence application framework in human resource management. In Proceedings of The 18th International Conference on Electronic Business (pp. 106-114). ICEB, Guilin, China, December 2-6. http://iceb.johogo.com/proceedings/2018/ICEB2018_paper_77_full.pdf

     [28]    P. Li, A. Bastone, T.A. Mohamad & F. Schiavone (2023). How does artificial intelligence impact human resources performance. evidence from a healthcare institution in the United Arab Emirates. Journal of Innovation & Knowledge. https://www.sciencedirect.com/science/article/pii/S2444569X23000367

    [29]     OECD (2021). Artificial Intelligence, Machine Learning and Big Data in Finance: Opportunities, Challenges, and Implications for Policy Makers, https://www.oecd.org/finance/artificial-intelligence-machine-learning-big-data-in-finance.htm 

    [30]     N. A. Perifanis & F. Kitsios (2023). Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information, 14(2), 85. MDPI AG. Retrieved from (Doi   :  https://doi.org/10.3390/info14020085)

    [31]     H. Taherdoost & M. Madanchian (2023). Artificial Intelligence and Knowledge Management: Impacts, Benefits, and Implementation. Computers. 12(4):72. (Doi   :  https://doi.org/10.3390/computers12040072)

    [32]     A. Singh & A. Shaurya (2021). Impact of Artificial Intelligence on HR practices in the UAE. Humanit Soc Sci Commun 8, 312. (Doi   :  https://doi.org/10.1057/s41599-021-00995-4)

    [33]     J. Williams, SM. Fiore & F. Jentsch (2022). Supporting Artificial Social Intelligence With Theory of Mind. Front. Artif. Intell. 5:750763. DOI: 10.3389/frai.2022.750763. https://www.frontiersin.org/articles/10.3389/frai.2022.750763/full

    [34]     S. Karadayi-Usta, “A new servicizing business model of transportation: Comparing the new and existing alternatives via neutrosophic Analytic Hierarchy Process,” Neutrosophic Sets Syst., vol. 48, no. 1, p. 5, 2022.

    [35]     S. Aydın, A. Aktas, and M. Kabak, “Neutrosophic fuzzy analytic hierarchy process approach for safe cities evaluation criteria,” in 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing—ICAFS-2018 13, Springer, 2019, pp. 958–965.

    [36]     F. Kutlu Gündoğdu and C. Kahraman, “Hospital performance assessment using interval-valued spherical fuzzy analytic hierarchy process,” Decis. Mak. with Spherical Fuzzy Sets Theory Appl., pp. 349–373, 2021.

    [37]     S. D. Á. Gómez, J. F. G. García, and B. P. Guanolema, Linking neutrosophic ahp and neutrosophic social choice theory for group decision making, vol. 37. Infinite Study, 2020.

    [38]     Shimaa Said,Mahmoud M. Ibrahim,Mahmoud M. Ismail, An Integrated Multi-Criteria Decision-Making Approach for Identification and Ranking Solar Drying Barriers under Single-Valued Triangular Neutrosophic Sets (SVTNSs), Journal of Neutrosophic and Information Fusion, Vol. 2 , No. 1 , (2023) : 35-49 (Doi   :  https://doi.org/10.54216/NIF.020103)

    [39]     A. Vafadarnikjoo and M. Scherz, “A hybrid neutrosophic-grey analytic hierarchy process method: decision-making modelling in uncertain environments,” Math. Probl. Eng., vol. 2021, pp. 1–18, 2021.

    Cite This Article As :
    Bettayeb, Abderrahmane. , Eid, Muhammad. Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 154-165. DOI: https://doi.org/10.54216/IJNS.210315
    Bettayeb, A. Eid, M. (2023). Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science, (), 154-165. DOI: https://doi.org/10.54216/IJNS.210315
    Bettayeb, Abderrahmane. Eid, Muhammad. Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science , no. (2023): 154-165. DOI: https://doi.org/10.54216/IJNS.210315
    Bettayeb, A. , Eid, M. (2023) . Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science , () , 154-165 . DOI: https://doi.org/10.54216/IJNS.210315
    Bettayeb A. , Eid M. [2023]. Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science. (): 154-165. DOI: https://doi.org/10.54216/IJNS.210315
    Bettayeb, A. Eid, M. "Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis," International Journal of Neutrosophic Science, vol. , no. , pp. 154-165, 2023. DOI: https://doi.org/10.54216/IJNS.210315