Volume 20 , Issue 4 , PP: 223-234, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
V. S. Naga Malleswari 1 * , Kiran kumar 2 , K. Bhagya Lakshmi 3 , G. Luka 4 , T. Srinivasa Rao 5
Doi: https://doi.org/10.54216/IJNS.200418
Neutrosophic set theory is applied to lattice implication algebra, and the concept of neutrosophic filters and neutrosophic lattice filters in lattice implication algebra are introduced. Several properties are investigated. Characterizations of a neutrosophic filter are discussed. Finally, we proved that every neutrosophic filter is a neutrosophic lattice filter, but the converse is invalid.
Neutrosophic set(NS) , Lattice implication algebra (LIA) , Neutrosophic filter(NF) , Neutrosophic lattice filter(NLF)
[1] C. A. C. Sweety, I. Arockiarani, Rough sets in neutrosophic approximation space, Annals of Fuzzy Mathematics and Informatics, 13 (4) (2017), 449–463.
[2] E. H. Roh, S. Y. Kim, Y. Xu and Y. B. Jun, Some operations on lattice implication algebras, International J. Of Mathematics and Mathematical Sciences27(2001),no. 1,45-52.
[3] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press (1999).
[4] F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24(5) (2005), 287–297.
[5] J. Liu and Y. Xu, Filters and structure of lattice implication algebras, Chinese Science Bulletin 42(18) , 1517–1520, 1997.
[6] Y.B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 75–86.
[7] Y.B. Jun, S.J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms 2018, 7, 23; doi:10.3390/axioms7020023.
[8] Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N -structures applied to BCK/BCI-algebras, Information 2017, 8, 128; doi:10.3390/info8040128.
[9] Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan, Neutrosophic positive implicative N -ideals in BCK/BCI-algebras, Axioms 2018, 7, 3; doi:10.3390/axioms7010003.
[10] R.A. Borzooei, X.H. Zhang, F. Smarandache and Y.B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry 2018, 10, 350; doi:10.3390/sym10080350.
[11] R. A. Borzooei, H. Farahani and M. Moniri, Neutrosophic Deductive Filters on BL-Algebras, Journal of Intel- ligent and Fuzzy Systems, 26(6), ( 2014), 2993-3004.
[12] R.A. Borzooei, M. Mohseni Takallo, F. Smarandache nad Y.B. Jun, Positive implicative BMBJ-neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, 23 (2018), 148-163.
[13] Y.B. Jun, On LI-ideals and prime LI-ideals of lattice implication algebras, Journal of the Korean Mathematical Society, 36(2) (1999), 369–380.
[14] V. Chang, M. Abdel-Basset, M. Ramachandran, Towards a reuse strategic decision pattern framework–from theories to practices, Information Systems Frontiers, 21(1) (2019), 27-44.
[15] 13. N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb, A. Aboelfetouh, An integrated neutrosophic-topsis approach and its application to personnel selection: A new trend in brain processing and analysis, IEEE Access, 7 (2019), 29734-29744.
[16] 14. N. A. Nabeeh, M. Abdel-Basset, H. A. El-Ghareeb, A. Aboelfetouh, Neutrosophic multi-criteria decision making approach for iot-based enterprises, IEEE Access, 7 (2019), 59559-59574.
[17] Y.B. Jun, E.H. Roh and Y. xu, LI-ideals in lattice implication algebras, Bulletin of the Korean Mathematical Society, 35(1) (1998), 13–24.
[18] M.A. Ozt¨urk ¨and Y.B. Jun,Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, Journal of the International Mathematical Virtual Institute, 8 (2018), 1–17.
[19] S.Z. Song, M. Khan, F. Samarandache and Y.B. Jun, A novel extension of neutrosophic sets and its application in BCK/BI-algebras,(2),(2018)308-318
[20] S.Z. Song, F. Smarandache and Y.B. Jun, Neutrosophic commutative N -ideals in BCK-algebras, Information, 8 (2017), 130; doi:10.3390/info8040130.
[21] Y. Xu, Homomorphisms in lattice implication algebras, Proc. of 5th Many-Valued Logical Congress of China, (1992), 206–211.
[22] Y. Xu, Lattice implication algebras, Journal of Southwest Jiaotong University, 1 (1993), 20–27.
[23] Y. Xu, D. Ruan, K.Y. Qin and J. Liu, Lattice-valued logic, Studies in Fuzzyness and Soft Computing, Vol. 132, Springer-Verlag, Berlin Heidelberg, New York, 2003.
[24] L. Z. Liu, Generalized intuitionistic fuzzy filters on residuated lattices, Journal of Intelligent & Fuzzy Systems, 28 (2015), 1545–1552
[25] J. M. Zhan, Q. Liu and Hee Sik Kim, Rough fuzzy (fuzzy rough) strong h-ideals of hemirings, Italian Journal of Pure and Applied Mathematics, 34(2015), 483–496.
[26] Zadeh, L.A. : Fuzzy sets. Infor and Control 8:94-102,1965.
[27] V.Amarendra babu, V.Siva naga malleswari, K.Abida begum, MBJ-filters on lattice implication algebras,Journal of Physics: Conference Series, Volume 2332, Issue 1, id.012007, 8 pp.
[28] Y.B.Jun, Implicative filters of lattice implication algebra, Bull. Korean Math. Soc.34(2):193-198, 1997.
[29] Y.B.Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy sets an systems. 121:353- 357, 2001.
[30] K.Y.Qin, Y.Xu, On some properties of fuzzy filters of lattice implication algebra, Liu. Y.M.(Ed.)Fuzzy set Theory and its Application. Press of Hebi University, Baoding, China,179-182,1998
[31] Y.Xu, K.Y.Qin, Fuzzy lattice implication algebras, J. Southwest Jiaotong Univ. 30:121-127,1995.
[32] s Y.Xu, K.Y.Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1:251-260, 1993.