International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 19 , Issue 1 , PP: 148-165, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version)

Florentin Smarandache 1 *

  • 1 Mathematics, Physical and Natural Science Division, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA - (smarand@unm.edu)
  • Doi: https://doi.org/10.54216/IJNS.190111

    Received: April 03, 2022 Accepted: August 08, 2022
    Abstract

    In this paper, we prove that Neutrosophic Statistics is more general than Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, inferential procedures, probability distributions, graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic probability that is more general than imprecise and classical probabilities and has more detailed corresponding probability density functions. While Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments by Woodall et al. [1]. We show that not all indeterminacies (uncertainties) may be represented by intervals. Also, in some cases, we should better use hesitant sets (that have less indeterminacy) instead of intervals. We redirect the authors to the Plithogenic Probability and Plithogenic Statistics which are the most general forms of MultiVariate Probability and Multivariate Statistics respectively (including, of course, the Imprecise Probability and Interval Statistics as subclasses).

    Keywords :

    Neutrosophics , Plithogenics , Interval , MultiVariate Probability , MultiVariate Statistics , Imprecise Probability , Interval Statistics , Neutrosophic Numbers.

    References

    [1] William H. Woodall, Anne R. Driscolli, and Douglas C. Montgomery, A Review and

    Perspective on Neutrosophic Statistical Process Monitoring Methods, preprint, ResearchGate,

    June 2022.

    [2] Florentin Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing,

    Craiova, 2014, 124 p. http://fs.unm.edu/NeutrosophicStatistics.pdf.

    [3] H. Zhang, J. Wang, and X. Chen, Interval neutrosophic sets and their application in multicriteria

    decision-making problems, Scientific World Journal Volume 2014, Article ID 645953, 15 pages,

    http://dx.doi.org/10.1155/2014/645953.

    [4] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and

    Neutrosophic Probability, Sitech Publishing House, Craiova, 2013,

    http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf.

    [5] F.Smarandache, Nidus idearum. Scilogs, II: de Rerum consecration (second edition) Brussels,

    pages 109-110, 2016, http://fs.unm.edu/NidusIdearum2-ed2.pdf.

    [6] F. Smarandache, Plithogenic Probability & Statistics are generalizations of MultiVariate

    Probability & Statistics, Neutrosophic Sets, and Systems, Vol. 43, 280-289, 2021,

    http://fs.unm.edu/NSS/PlithogenicProbabilityStatistics20.pdf.

    [7] Frederica Gioia, Carlo N. Lauro, Basic Statistical Methods for Interval Data, Statistica

    Applicata, Vol. 17, no. 1, pp. 1-29, 2005.

    [8] Florentin Smarandache: A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy,

    Neutrosophic Set, Neutrosophic Probability and Statistics (sixth edition). InfoLearnQuest, 1998 -

    2007, 156 p. http://fs.unm.edu/eBook-Neutrosophics6.pdf

    [9] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps, and Neutrosophic

    Cognitive Maps, Xiquan, Phoenix, 211 p., 2003, http://fs.unm.edu/NCMs.pdf

    [10] Florentin Smarandache: Introduction to Neutrosophic Statistics. Sitech & Education Publishing,

    2014, 124 p. http://fs.unm.edu/NeutrosophicStatistics.pdf

    [11] Florentin Smarandache: Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset.

    Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics. Pons Editions,

    Brussels, 2016, 168 p. http://fs.unm.edu/NeutrosophicOversetUndersetOffset.pdf

    [12] Maikel Leyva Vázquez, Florentin Smarandache: Neutrosofía: Nuevos avances en el tratamiento

    de la incertidumbre. Pons Editions, Bruselas, 2018, 74 p.

    http://fs.unm.edu/NeutrosofiaNuevosAvances.pdf

    [13] Tatiana Veronica Gutierrez Quinonez, Fabian Andres Espinoza, Ingrid Kathyuska Giraldo,

    Angel Steven Asanza, Mauricio Daniel Montenegro: Estadistica y Probabilidades: Una Vision

    Neutrosofica desde el Aprendizaje Basado en Problemas en la Construccion del

    Conocimiento. Pons Editions, Bruselas, 2020, 131 p.

    http://fs.unm.edu/EstadisticaYProbabilidadNeutrosofica.pdf

    [14] F. Smarandache, Neutrosophic Statistics vs. Classical Statistics, a section in Nidus Idearum /

    Superluminal Physics, Vol. 7, third edition, p. 117, 2019, http://fs.unm.edu/NidusIdearum7-

    ed3.pdf .

    [15] F. Smarandache, Nidus Idearum de Neutrosophia (Book Series), Editions Pons, Brussels,

    Belgium, Vols. 1-7, 2016-2019; http://fs.unm.edu/ScienceLibrary.htm

    [16] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and

    Neutrosophic Probability, Sitech Publishing House, Craiova, 2013,

    http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf

    [17] Rafif Alhabib: Formulation of the classical probability and some probability distributions due to

    neutrosophic logic and its impact on Decision Making. PhD Thesis in Arabic, held under the

    supervision of Dr. M. M. Ranna, Dr. H. Farah, Dr. A. A. Salama, Faculty of Science,

    Department of Mathematical Statistics, University of Aleppo, Syrian Arab Republic,

    2019. http://fs.unm.edu/NS/FormulationOfTheClassicalProbability-PhDThesis.pdf

    [18] Florentin Smarandache: Operators on Single-Valued Neutrosophic Oversets, Neutrosophic

    Undersets, and Neutrosophic Offsets. Journal of Mathematics and Informatics, Vol. 5, 2016, 63-

    67.

    [19] Florentin Smarandache: Interval-Valued Neutrosophic Oversets, Neutrosophic Undersets, and

    Neutrosophic Offsets. International Journal of Science and Engineering Investigations, Vol. 5,

    issue 54, 2016, Paper ID: 55416-01, 4 p.

    [20] Nouran M. Radwan, M. Badr Senousy, Alaa El Din M. Riad: Approaches for Managing

    Uncertainty in Learning Management Systems. Egyptian Computer Science Journal, vol. 40, no.

    2, May 2016, 10 p.

    [21] Muhammad Aslam: A Variable Acceptance Sampling Plan under Neutrosophic Statistical

    Interval Method. Symmetry 2019, 11, 114, DOI: 10.3390/sym11010114.

    [22] Soumyadip Dhar, Malay K. Kundu: Accurate segmentation of complex document image using

    digital shearlet transform with neutrosophic set as uncertainty handing tool. Applied Soft

    Computing, vol. 61, 2017, 412–426.

    [23] B. Kavitha, S. Karthikeyan, P. Sheeba Maybell: An ensemble design of intrusion system for

    handling uncertainty using Neutrosophic Logic Classifier. Knowlwdge-Based Systems, vol. 28,

    2012, 88-96.

    [24] Muhammad Aslam: A new attribute sampling plan using neutrosophic statistical interval

    method. Complex & Intelligent Systems, 6 p. DOI: 10.1007/s40747-018-0088-6

    [25] Muhammad Aslam, Nasrullah Khan, Mohammed Albassam: Control Chart for Failure-Censored

    Reliability Tests under Uncertainty Environment. Symmetry 2018, 10, 690, DOI:

    10.3390/sym10120690.

    [26] Muhammad Aslam, Nasrullah Khan, Ali Hussein AL-Marshadi: Design of Variable Sampling

    Plan for Pareto Distribution Using Neutrosophic Statistical Interval Method. Symmetry 2019, 11,

    80, DOI: 10.3390/sym11010080.

    [27] Jun Ye, Jiqian Chen, Rui Yong, Shigui Du: Expression and Analysis of Joint Roughness

    Coefficient Using Neutrosophic Number Functions. Information, Volume 8, 2017, 13 pages.

    [28] Jiqian Chen, Jun Ye, Shigui Du, Rui Yong: Expressions of Rock Joint Roughness Coefficient

    Using Neutrosophic Interval Statistical Numbers. Symmetry, Volume 9, 2017, 7 pages.

    [29] Adrian Rubio-Solis, George Panoutsos: Fuzzy Uncertainty Assessment in RBF Neural Networks

    using neutrosophic sets for Multiclass Classification. Presented at 2014 IEEE International

    Conference on Fuzzy Systems (FUZZ-IEEE) July 6-11, 2014, Beijing, China, 8 pages.

    [30] Pierpaolo D’Urso: Informational Paradigm, management of uncertainty and theoretical

    formalisms in the clustering framework: A review. Information Sciences, 400–401 (2017), pp.

    30-62, 33 pages.

    [31] Muhammad Aslam, Mohammed Albassam: Inspection Plan Based on the Process Capability

    Index Using the Neutrosophic Statistical Method. Mathematics 2019, 7, 631, DOI:

    10.3390/math7070631.

    [32] Mirela Teodorescu, Florentin Smarandache, Daniela Gifu: Maintenance Operating System

    Uncertainties Approached through Neutrosophic Theory. 8 p.

    [33] Muhammad Aslam, Rashad A. R. Bantan, Nasrullah Khan: Monitoring the Process Based on

    Belief Statistic for Neutrosophic Gamma Distributed Product. Processes 2019, 7, 209, DOI:

    10.3390/pr7040209.

    [34] Rafael Rojas-Gualdron, Florentin Smarandache, Carlos Diaz-Bohorquez: Application of The

    Neutrosophical Theory to Deal with Uncertainty in Supply Chain Risk Management. AGLALA

    2019; 10 (2): 1-19.

    [35] Florentin Smarandache, Gheorghe Savoiu: Neutrosophic Index Numbers: Neutrosophic Logic

    Applied in The Statistical Indicators Theory. Critical Review, Vol. XI, 2015, pp. 67-100.

    [36] Murat Kirisci, Necip Simsek: Neutrosophic normed spaces and statistical convergence. Journal

    of Analysis, 11 April 2020, DOI: 10.1007/s41478-020-00234-0.

    [37] S.K. Patro: The Neutrosophic Statistical Distribution: More Problems, More Solutions. 17 p.

    [38] Deepesh Kunwar, Jayant Singh, Florentin Smarandache: Neutrosophic statistical evaluation of

    migration with particular reference to Jaipur. Octogon Mathematical Magazine, vol. 26, no. 2,

    October 2018, 560-568.

    [39] Deepesh Kunwar, Jayant Singh, Florentin Smarandache: Neutrosophic statistical techniques to

    find migration pattern in Jaipur. Octogon Mathematical Magazine, vol. 26, no. 2, October 2018,

    583-592.

    [40] Muhammad Aslam, Osama H. Arif, Rehan Ahmad Khan Sherwani: New Diagnosis Test under

    the Neutrosophic Statistics: An Application to Diabetic Patients. Hindawi, BioMed Research

    International, Volume 2020, Article ID 2086185, 7 pages; DOI: 10.1155/2020/2086185.

    [41] Jose L. Salmeron, Florentin Smarandache: Processing Uncertainty and Indeterminacy in

    Information Systems success mapping. 13 p., arXiv:cs/0512047v2.

    [42] Wenzhong Jiang, Jun Ye, Wenhua Cui: Scale Effect and Anisotropic Analysis of Rock Joint

    Roughness Coefficient Neutrosophic Interval Statistical Numbers Based on Neutrosophic

    Statistics. Journal of Soft Computing in Civil Engineering, 2-4 / 2018, 62-71; DOI:

    10.5281/zenodo.3130240.

    [43] Muhammad Aslam, P. Jeyadurga, Saminathan Balamurali, Ali Hussein Al-Marshadi: Time-

    Truncated Group Plan under aWeibull Distribution based on Neutrosophic

    Statistics. Mathematics 2019, 7, 905; DOI: 10.3390/math7100905

    [44] A.A. Salama, M. Elsayed Wahed, Eman Yousif: A Multi-objective Transportation Data

    Problems and their Based on Fuzzy Random Variables. Neutrosophic Knowledge, vol. 1, 2020,

    41-53; DOI: 10.5281/zenodo.4269558.

    [45] Philippe Schweizer: Uncertainty: two probabilities for the three states of

    neutrosophy. International Journal of Neutrosophic Science (IJNS), Volume 2, Issue 1, 2020,

    18-26; DOI: 10.5281/zenodo.3989350.

    [46] Carlos N. Bouza-Herrera, Mir Subzar: Estimating the Ratio of a Crisp Variable and a

    Neutrosophic Variable. International Journal of Neutrosophic Science (IJNS), Volume 11, Issue

    1, 2020, 9-21; DOI: 10.5281/zenodo.4275712

    [47] Angel Carlos Yumar Carralero, Darvin Manuel Ramirez Guerra, Giorver Perez Iribar: Analisis

    estadistico neutrosofico en la aplicacion de ejercicios fisicos en la rehabilitacion del adulto

    mayor con gonartrosis. Neutrosophic Computing and Machine Learning, Vol. 13, 1-9, 2020;

    DOI: https://zenodo.org/record/3901770.

    [48] Alexandra Dolores Molina Manzo, Rosa Leonor Maldonado Manzano, Blanca Esmeralda Brito

    Herrera, Johanna Irene Escobar Jara: Analisis estadistico neutrosofico de la incidencia del voto

    facultativo de los jovenes entre 16 y 18 anos en el proceso electoral del Ecuador. Neutrosophic

    Computing and Machine Learning, Vol. 11, 9-14, 2020; DOI:

    https://zenodo.org/record/3474439.

    [49] Johana Cristina Sierra Morán, Jenny Fernanda Enríquez Chuga,

    Wilmer Medardo Arias Collaguazo And

    Carlos Wilman Maldonado Gudiño:Neutrosophic statistics applied to the analysis of socially

    responsible participation in the community , Neutrosophic Sets and Systems, vol. 26, 2019, pp.

    19 -28. DOI: 10.5281/zenodo.3244232

    [50] Paúl Alejandro Centeno Maldonado, Yusmany Puertas Martinez, Gabriela Stephanie Escobar

    Valverde, and Juan Danilo Inca Erazo: Neutrosophic statistics methods applied to demonstrate

    the extra-contractual liability of the state from the Administrative Organic

    Code, Neutrosophic Sets and Systems, vol. 26, 2019, pp. 29-34. DOI: 10.5281/zenodo.3244262

    [51] S. K. Patro, F. Smarandache: The Neutrosophic Statistical Distribution - More Problems, More

    Solutions, Neutrosophic Sets and Systems, vol. 12, 2016, pp. 73-

    79. doi.org/10.5281/zenodo.571153

    [52] Lilia Esther Valencia Cruzaty, Mariela Reyes Tomalá, Carlos Manuel Castillo Gallo and

    Florentin Smarandache, A Neutrosophic Statistic Method to PredictTax Time Series in

    Ecuador, Neutrosophic Sets and Systems, vol. 34, 2020, pp. 33-39.

    DOI: 10.5281/zenodo.3843289; http://fs.unm.edu/NSS/NeutrosophicStatisticMethod.pdf

    [53] Somen Debnath: Neutrosophication of statistical data in a study to assess the knowledge, attitude

    and symptoms on reproductive tract infection among women. Journal of Fuzzy Extension &

    Applications (JFEA), Volume 2, Issue 1, Winter 2021, 33-40; DOI:

    10.22105/JFEA.2021.272508.1073.

    [54] Muhammad Aslam, Rashad A.R. Bantan, Nasrullah Khan: Design of tests for mean and variance

    under complexity-an application to rock measurement data. Elsevier: Measurement, Volume

    177, June 2021, 109312; DOI: 10.1016/j.measurement.2021.109312.

    [55] O.H. Arif, Muhammad Aslam: A new sudden death chart for the Weibull distribution under

    complexity. Springer: Complex & Intelligent Systems (2021); DOI: 10.1007/s40747-021-00316-

    x.

    [56] Chen, J., Ye, J., Du, S., & Yong, R. (2017). Expressions of rock joint roughness coefficient

    using neutrosophic interval statistical numbers. Symmetry, 9(7), 123.

    [57] Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality

    Technology, 18(4), 203-210.

    [58] Montgomery, D. C. (2007). Introduction to statistical quality control: John Wiley & Sons.

    [59] Woodall, W. H. (2022). Book review: Introduction to statistical process control: Introduction to

    statistical process control by muhammad aslam, aamir saghir and liaquat ahmad, john wiley &

    sons, hoboken, NJ. 2020. 304 pp. $120.00 hardcover, ISBN 978-1-119-52845-6: Taylor &

    Francis.

    [60] Woodall, W. H. (2022), Messages to F. Smarandache, M. Aslam and others, ResearchGate.net,

    September 2022

    [61] F. Smarandache, History of Neutrosophic Set, Logic, Probability and Statistics and their

    Applications, Mathematics and Statistics Departments, King Abdulaziz University, Jeddah,

    Saudi Arabia, 19 December 2019.

    [62] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

    Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

    Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, lecture series, Nguyen

    Tat Thanh University, Ho Chi Minh City, Vietnam, 31st May - 3th June 2016.

    [63] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

    Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

    Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, Ho Chi Minh City

    University of Technology (HUTECH), Ho Chi Minh City, Vietnam, 30th May 2016.

    [64] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

    Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

    Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, lecture series, Vietnam

    national University, Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam,

    lecture series, 14th May – 26th May 2016.

    [65] F. Smarandache, Foundations of Neutrosophic Logic, Set, Probability and Statistics and their

    Applications in Science. n-Valued Refined Neutrosophic Set, Logic, Probability and Statistics,

    Universidad Complutense de Madrid, Facultad de Ciencia Matematicas, Departamento de

    Geometria y Topologia, Instituto Matematico Interdisciplinar (IMI), Madrid, Spain, 9th July

    2014.

    Cite This Article As :
    Smarandache, Florentin. Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version). International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 148-165. DOI: https://doi.org/10.54216/IJNS.190111
    Smarandache, F. (2022). Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version). International Journal of Neutrosophic Science, (), 148-165. DOI: https://doi.org/10.54216/IJNS.190111
    Smarandache, Florentin. Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version). International Journal of Neutrosophic Science , no. (2022): 148-165. DOI: https://doi.org/10.54216/IJNS.190111
    Smarandache, F. (2022) . Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version). International Journal of Neutrosophic Science , () , 148-165 . DOI: https://doi.org/10.54216/IJNS.190111
    Smarandache F. [2022]. Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version). International Journal of Neutrosophic Science. (): 148-165. DOI: https://doi.org/10.54216/IJNS.190111
    Smarandache, F. "Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version)," International Journal of Neutrosophic Science, vol. , no. , pp. 148-165, 2022. DOI: https://doi.org/10.54216/IJNS.190111