International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 18 , Issue 4 , PP: 355-374, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

N-Cylindrical Fuzzy Neutrosophic Sets

Sarannya Kumari R 1 * , Sunny Kalayathankal 2 , Mathews George 3 , Florentin Smarandache 4

  • 1 Research Scholar, Catholicate College, Pattanamthitta, Kerala, India. ORCID ID-0000-0002-0050-6218 - (saranya6685@gmail.com)
  • 2 Principal (Professor & Dean of Research), Jyothi College of Engineering, Thrissur, Kerala,India. ORCID ID-0000-0002-0680-1031 - (sunnyjoseph2014@yahoo.com)
  • 3 Department of Mathematics, Providence College of Engineering, Alappuzha, Kerala, India - (mathews.g@providence.edu.in)
  • 4 Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA. ORCID ID-0000-0002-5560-5926 - (smarand@unm.edu)
  • Doi: https://doi.org/10.54216/IJNS.180430

    Received: March 30, 2022 Accepted: July 14, 2022
    Abstract

    In this paper, we introduce a new type of fuzzy Neutrosophic set called n-Cylindrical fuzzy Neutrosophic set (n-CyFNS), with I as independent neutrosophic component. The n-CyFNS can be claimed as the largest extension of fuzzy sets. In n-CyFNS, the degree of positive, neutral and negative membership functions are satisfying the condition, 0≤ βA(x) ≤1 and 0≤ αA n(x) + γAn(x) ≤ 1, n>1, is an integer.  Also the distance between two n- CyFNS and its properties are also defined. Along with basic operations on n- CyFNSs, we put forward two concepts-Neutrosophic affinity degree & Neutrosophic similarity index which is used to compare and correlate n-CyFNSs respectively. A comparison is made in the n-CyFNS environment using the existing correlation measures to check its reliability.

    Keywords :

    n- Cylindrical fuzzy neutrosophic sets (n-CyFNSs), height of n-CyFNS , peak of n-CyFNS, right cylindrical fuzzy Neutrosophic set (n-RCyFNS) , neutosophic affinity degree , neutrosophic similarity index.

    References

    [1]. Ashraf S, Abdullah S, Spherical aggregation operators and their application in multi attribute group decisionmaking,

    Int J Intell Syst 34(3):493–523 (2019)

    [2]. C. Antony Crispin Sweety and R.Jhansi, Fermatean Neutrosophic sets, International Journal of Advanced

    Research in Computer and Communication Engineering, Vol. 10, Issue 6 (2021)

    DOI 10.17148/IJARCCE.2021.10605

    [3]D.Ajay, P.Chellamani, Pythagorean Neutrosophic Fuzzy Graphs, International journal of neutrosophic

    science, Vol. 11, No. 2, PP. 108-114, 2020

    [4]. I.Arokiarani, J.Martina Jency, More on fuzzy Neutrosophic sets and fuzzy Neutrosophic topological spaces,

    International Journal of innovative research & studies, 3(5),642-652, 2014.

    [5] .I. Arokiarani, I.R Sumati, J.Martina Jency,Fuzzy Neutrosophic soft topological spaces, International Journal

    of Mathematical Archives, 4(10), 225-238, 2013.

    [6]. Atanassov,K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol.20, 87-96, (1986).

    [7]. A. Kharal, A Neutrosophic Multicriteria Decision Making Method, New Mathematics and Natural

    Computation, Creighton University, USA, 2013.

    [8]. F.Smarandache, A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set,

    Neutrosophic Probability; American Research Press: Rehoboth, DE, USA, 1999.

    [9]. F.Smarandache, Degree of Dependence and Independence of Neutrosophic Logic Components Applied in

    Physics, 2016 Annual Spring Meeting of the American Physical Society (APS) Ohio-Region Section, Dayton,

    Ohio, USA, 08-09 April 08 2016.

    [10]. F. Smarandache ,Degree of Dependence and Independence of the (Sub)Components of Fuzzy Set and

    Neutrosophic Set, Neutrosophic Sets and Systems, Vol. 11,95-97,2016.

    [11]. I. M. Hanafy, A. A. Salama and K. Mahfouz, Correlation Coefficients of Neutrosophic Sets by Centroid

    Method, International Journal of Probability and Statistics, 2(1), 9–12, 2013.

    [12]. J. Ye, Vector Similarity Measures of Simplified Neutrosophic Sets and Their Application in Multi criteria

    Decision Making International Journal of Fuzzy Systems, Vol. 16, No. 2, 204–215, 2014.

    [13]. J. Ye, Multicriteria decision-making method using the correlation coefficient under single-valued

    neutrosophic environment, International Journal of General Systems, 42(4), 386–394, 2013.

    [14] Mohamed Bisher Zeina , Omar Zeitouny , Fatina Masri , Fatima Kadoura , Said Broumi, Operations on

    Single-Valued Trapezoidal Neutrosophic Numbers using (α,β,γ)-Cuts “Maple Package”, International Journal of

    Neutrosophic Science, Vol. 15 , No. 2 , (2021) : 113-122 (Doi : https://doi.org/10.54216/IJNS.150205)

    [15] M. Mullai , Said Broumi, Dominating Energy in Neutrosophic graphs, International Journal of Neutrosophic

    Science, Vol. 5 , No. 1 , (2020) : 38-58 (Doi : https://doi.org/10.54216/IJNS.050104)

    [16]. M. Rafiq et al. / The cosine similarity measures of spherical fuzzy sets and their applications, Journal of

    Intelligent & Fuzzy Systems, DOI:10.3233/JIFS-181922

    [17] Ngan Thi Roan , Florentin Smarandache, H-Max Single-Valued Neutrosophic Distance Measure in Medical

    Diagnosis, International Journal of Neutrosophic Science, Vol.15, No. 2 , (2021) :62-

    76 (Doi : https://doi.org/10.54216/IJNS.150201)

    [18]. R.Jansi, K.Mohana and F. Smarandache, Correlation Measure for Pythagorean Neutrosophic Fuzzy Sets

    with T and F as Dependent Neutrosophic Components, Neutrosophic sets and systems, 30,202-212, 2019

    [19]. S. Broumi, F. Smarandache, Correlation Coefficient of Interval Neutrosophic set, Proceedings of the

    International Conference ICMERA, Bucharest, October 2013.

    [20] S. Broumi, F. Smarandache, Several Similarity Measures of Neutrosophic Sets, Neutrosophic Sets and

    Systems, 1, 54–62, 2013.

    [21]. Tahir Muhammed, An approach toward decision-making and medical diagnosis problems using the concept

    of spherical fuzzy sets, Neural Computing andApplications,(2018)https://doi.org/10.1007/s00521-018-3521-

    2(012,-volV)(0123

    [22]. Yager, R. R, Pythagorean membership grades in multi criteria decision making, IEEE Trans Fuzzy Syst

    22(4), 958–965, (2014).

    [23]. Yager, R. R, Generalized Ortho pair fuzzy sets, IEEE Trans Fuzzy Systems,(2016)

    [24]. Zadeh, L.A, Fuzzy Sets, Information and Control, Vol.8, 338-353,( 1965)

    [25]. ZhangX, XuZ ,Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets,

    International Journal of Intelligent Systems , 29(12),1061–1078. (2014)

    Cite This Article As :
    Kumari, Sarannya. , Kalayathankal, Sunny. , George, Mathews. , Smarandache, Florentin. N-Cylindrical Fuzzy Neutrosophic Sets. International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 355-374. DOI: https://doi.org/10.54216/IJNS.180430
    Kumari, S. Kalayathankal, S. George, M. Smarandache, F. (2022). N-Cylindrical Fuzzy Neutrosophic Sets. International Journal of Neutrosophic Science, (), 355-374. DOI: https://doi.org/10.54216/IJNS.180430
    Kumari, Sarannya. Kalayathankal, Sunny. George, Mathews. Smarandache, Florentin. N-Cylindrical Fuzzy Neutrosophic Sets. International Journal of Neutrosophic Science , no. (2022): 355-374. DOI: https://doi.org/10.54216/IJNS.180430
    Kumari, S. , Kalayathankal, S. , George, M. , Smarandache, F. (2022) . N-Cylindrical Fuzzy Neutrosophic Sets. International Journal of Neutrosophic Science , () , 355-374 . DOI: https://doi.org/10.54216/IJNS.180430
    Kumari S. , Kalayathankal S. , George M. , Smarandache F. [2022]. N-Cylindrical Fuzzy Neutrosophic Sets. International Journal of Neutrosophic Science. (): 355-374. DOI: https://doi.org/10.54216/IJNS.180430
    Kumari, S. Kalayathankal, S. George, M. Smarandache, F. "N-Cylindrical Fuzzy Neutrosophic Sets," International Journal of Neutrosophic Science, vol. , no. , pp. 355-374, 2022. DOI: https://doi.org/10.54216/IJNS.180430