Volume 1 , Issue 2 , PP: 55-63, 2020 | Cite this article as | XML | Html | PDF | Full Length Article
Omar Mar Cornelio 1 * , Jorge Gulín González 2 , Ivan Santana Ching 3 , Barbara Bron Fonseca 4
The training of specialists in automation in Cuba is carried out through the career of Automation Engineering that has within its fundamental disciplines, the Control Systems discipline. For the development of laboratory practices, students work on physical or remote devices, in person or remotely, in the latter using Remote Laboratory Systems. The present investigation proposes a Remote Laboratory System for the practice of control of the Automatic Engineering career. A scale thermal process model is designed for experimentation. The main result was the availability of practices for system identification, controller design and controller execution in real processes. In addition, the implemented solution allows students to carry out studies of the behavior of the temperature variable, the controller's response in the designed process, the establishment times, among other variables.
automatic control , laboratory practices , Remote Laboratory System.
[1] J. Saenz, J. Chacon, L. De La Torre, A. Visioli, and S. Dormido, “Open and Low-Cost Virtual and Remote Labs on Control Engineering,” Access, IEEE, vol. 3, pp. 805-814, 2015.
[2] D. Samuelsen, and O. H. Graven, "Remote laboratories in engineering education - an overview of implementation and feasability."
[3] C. A. Cáceres, and D. Amaya, “Desarrollo e interacción de un laboratorio virtual asistido y controlado por PLC,” Entre Ciencia e Ingeniería,vol. 10, pp. 9-15, 2016.
[4] W. Jin-Hsien, and H. Jongyun, “An Approach to Computing With Words Based on Canonical Characteristic Values of Linguistic Labels,” Fuzzy Systems, IEEE Transactions on, vol. 15, no. 4, pp. 593-604, 2007.
[5] I. Santana, M. Ferre, E. Izaguirre, R. Aracil, and L. Hernandez, “Remote Laboratories for Education and Research Purposes in Automatic Control Systems,” Industrial Informatics, IEEE Transactions on, vol. 9, no. 1, pp. 547-556, 2013.
[6] J. T. Buitrago-Molina, J. S. Carvajal-Guerrero, and C. A. Zapata-Castillo, “Plataforma virtual para el mando local y remoto de un brazo robótico de apoyo para la educación en ingeniería,” Tecno Lógicas, vol. 17, pp. 67-74, 2014.
[7] D. A. Milner, and E. B. Holladay, “Laboratories as the Core for Health Systems Building,” Clinics in Laboratory Medicine, vol. 38, no. 1, pp. 1-9, 2018/03/01/, 2018.
[8] M. Zabaljauregui, O. Rodríguez, H. Mazzeo, and J. Rapallini, "Diseño de una plataforma remota para desarrollo de prácticas de laboratorio."
[9] O. Mar-Cornelio, I. Santana-Ching, and J. González-Gulín, “Sistema de Laboratorios Remotos para la práctica de Ingeniería de Control,” Revista científica, no. 36, pp. 356-366, 2019.
[10] O. Mar, and J. Gulín, “Model for the evaluation of professional skills in a remote laboratory system,” Revista científica, vol. 3, no. 33, pp. 332-343, 2018.
[11] A. R. Sartorius C., L. Hernández S., and R. A. Santonja, “Laboratorio a distancia para la prueba y evaluación de controladores a través de Internet,” Sba: Controle & Automação Sociedade Brasileira de Automatica, vol. 16, pp. 84-92, 2005.
[12] E. Rubio, I. Santana, V. Esparza, and J. Rohten, "Remote laboratories for control education: Experience at the universidad del Bío Bío." pp. 1-6.
[13] I. Aguilar Juárez, and J. R. Heredia Alonso, “Simuladores y laboratorios virtuales para Ingeniería en Computación,” Revista Iberoamericana para la Investigación y el Desarrollo Educativo, vol. 10, no. 1, pp. 1-19, 2013.
[14] O. Mar, J. Gulín, and S. I, “Sistema de Laboratorios a Distancia para la práctica de Control Automático,” Revista Cubana de Ciencias Informáticas, vol. 10, no. 4, pp. 171-183, 2016.
[15] O. Mar, L. Argota, and I. Santana, “Módulo para la evaluación de competencias a través de un Sistema de Laboratorios a Distancias,” RCCI,vol. 10, no. 2, pp. 132-147, 2016.
[17] J. Blum, Exploring Arduino: tools and techniques for engineering wizardry: John Wiley & Sons, 2019.
[18] M. Malhotra, I. K. Aulakh, N. Kaur, and N. S. Aulakh, "Air Pollution Monitoring Through Arduino Uno," ICT Systems and Sustainability, pp. 235-243: Springer, 2020.
[19] A. A. Murthy, N. Rao, Y. R. Beemaiah, S. D. Shandilya, and R. B. Siddegowda, “Design and Construction of Arduino-Hacked Variable Gating Distortion Pedal,” IEEE Access, vol. 2, pp. 1409-1417, 2014.
[20] M. Matijevic, and V. Cvjetkovic, "Overview of architectures with Arduino boards as building blocks for data acquisition and control systems." pp. 56-63.
[21] J. A. Contreras-Mendieta, C. P. Sarango-Lapo, D. I. Jara-Roa, and M. V. Agila-Palacios, “Implementación de un Laboratorio Remoto (LR), como recurso de apoyo en un sistema de Educación a Distancia,” Revista Ibérica de Sistemas e Tecnologias de Informação, no. E17, pp. 923-935, 2019.
[22] J. G. Ziegler, and Nichols, “Optimum Settings for Automatic Controllers,” Americana de Ingenieros Mecánicos (ASMET) Transactions, vol. 64, no. 11, pp. 1-10, 1942.
[23] J. Arántegui. "Control de procesos," http://web.udl.es/usuaris/w3511782/Control_de_procesos/Unidades_files/apuntes_10-11.pdf.
[24] L. J. RAMIRO, and S. M. Cuzange, “SEPNATC Controladores basados en predictor dinámico: análisis de estabilidad en el dominio del tiempo,” IEEE Latin America Transactions, vol. 17, no. 7, pp. 1207-1213, 2019.
[25] J. P. Ramírez, R. Terán, J. Beristáin, and V. Cárdenas, “Sintonización del controlador en cascada PI-STA para aplicaciones de filtros activos de potencia,” Revista Iberoamericana de Automática e Informática industrial, 2020.
[26] J. González, and O. Mar, “Algoritmo de clasificación genética para la generación de reglas de clasificación,” Serie Científica de la Universidad de las Ciencias Informáticas, vol. 8, no. 1, pp. 1-14, 2015.