Volume 15 , Issue 2 , PP: 233-243, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Zaid M. Obaid 1 , Khattab M. Ali Alheeti 2 *
Doi: https://doi.org/10.54216/JCIM.150218
The continual increase of cyber dangers necessitates creative techniques to better the identification and mitigation of malware. This research provides a cutting-edge examination of employing the Random Forest Classifier in combination with electromagnetic side-channel analysis for finding malicious software. Electromagnetic side-channel analysis harnesses the accidental information leakage from electronic systems, giving it a formidable tool for studying the underlying workings of gadgets. This study reveals how these electromagnetic side-channel signals may be used to identify subtle and evasive malware activities. The paper goes into the theoretical basis of electromagnetic side-channel analysis and the actual application of the Random Forest Classifier in this setting. By analyzing electromagnetic emissions, a wide range of devices and systems can be scrutinized for the telltale signs of malware-induced behaviors. Experimental results illustrate the effectiveness of this approach, showcasing the model demonstrated high accuracy, with an accuracy rate of up to 97%, demonstrating its ability to effectively leverage electromagnetic side-channel information for malicious program detection for enhanced cybersecurity measures.
Malware detection , Electromagnetic side-channel analysis , Random Forest Classifier , Cybersecurity , IoT , Side-channel attacks , Vulnerabilities
[1] Y. Harel, I. Ben Gal, and Y. Elovici, “Cyber security and the role of intelligent systems in addressing its challenges,” ACM Trans Intell Syst Technol, vol. 8, no. 4, May 2017, doi: 10.1145/3057729.
[2] L. B. Furstenau, M. K. Sott, and L. Mahlmann Kipper, “20 Years of Scientific Evolution of Cyber Security: a Science Mapping,” 2020. [Online]. Available: https://www.researchgate.net/publication/340413661
[3] K. Cabaj, D. Domingos, Z. Kotulski, and A. Respício, “Cybersecurity education: evolution of the discipline and analysis of master programs,” 2018.
[4] A. Golder, A. Bhat, and A. Raychowdhury, “Exploration into the Explainability of Neural Network Models for Power Side-Channel Analysis,” in Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, Association for Computing Machinery, Jun. 2022, pp. 59–64. doi: 10.1145/3526241.3530346.
[5] Y. Zhang, P. He, H. Gan, H. Zhang, and P. Fan, “Side-Channel Power Analysis Based on SA-SVM,” Applied Sciences (Switzerland), vol. 13, no. 9, May 2023, doi: 10.3390/app13095671.
[6] A. P. Sayakkara and N. A. Le-Khac, “Electromagnetic Side-Channel Analysis for IoT Forensics: Challenges, Framework, and Datasets,” IEEE Access, vol. 9, pp. 113585–113598, 2021, doi: 10.1109/ACCESS.2021.3104525.
[7] H. Tyralis, G. Papacharalampous, and A. Langousis, “A brief review of random forests for water scientists and practitioners and their recent history in water resources,” Water (Switzerland), vol. 11, no. 5. MDPI AG, May 01, 2019. doi: 10.3390/w11050910.
[8] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308–6325, 2020. doi: 10.1109/JSTARS.2020.3026724.
[9] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of deep learning for side-channel analysis,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 1, pp. 348–375, 2020, doi: 10.13154/tches.v2020.i1.348-375.
[10] A. V. Krasovsky and E. A. Maro, “Actual and historical state of side channel attacks theory,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Sep. 2019. doi: 10.1145/3357613.3357627.
[11] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20 years of study for the layman,” Cryptography, vol. 4, no. 2. MDPI AG, pp. 1–33, Jun. 01, 2020. doi: 10.3390/cryptography4020015.
[12] H. A. Khan et al., “IDEA: Intrusion Detection through Electromagnetic-Signal Analysis for Critical Embedded and Cyber-Physical Systems,” IEEE Trans Dependable Secure Comput, vol. 18, no. 3, pp. 1150–1163, May 2021, doi: 10.1109/TDSC.2019.2932736
[13] N. Prates, A. Vergutz, R. T. MacEdo, A. Santos, and M. Nogueira, “A Defense Mechanism for Timing-based Side-Channel Attacks on IoT Traffic,” in 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Dec. 2020. doi: 10.1109/GLOBECOM42002.2020.9322070.
[14] I. Shumailov, L. Simon, J. Yan, and R. Anderson, “Hearing your touch: A new acoustic side channel on smartphones,” Mar. 2019, [Online]. Available: http://arxiv.org/abs/1903.11137
[15] Proceedings of the 23rd Conference on Design, Automation and Test in Europe. EDA Consortium, 2020.
[16] A. Dubey, R. Cammarota, and A. Aysu, “MaskedNet: The First Hardware Inference Engine Aiming Power Side-Channel Protection,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.13063
[17] Y. Yao, P. Kiaei, R. Singh, S. Tajik, and P. Schaumont, “Programmable RO (PRO): A Multipurpose Countermeasure against Side-channel and Fault Injection Attack,” Jun. 2021, [Online]. Available: http://arxiv.org/abs/2106.13784
[18] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, M. Prvulovic, and A. Zajić, “Malware Detection in Embedded Systems Using Neural Network Model for Electromagnetic Side-Channel Signals,” Journal of Hardware and Systems Security, vol. 3, no. 4, pp. 305–318, Dec. 2019, doi: 10.1007/s41635-019-00074-w.
[19] J. He, Y. Liu, Y. Yuan, K. Hu, X. Xia, and Y. Zhao, “Golden chip free Trojan detection leveraging electromagnetic side channel fingerprinting,” 2019, doi: 10.1109/MDT.
[20] N. Sehatbakhsh et al., “REMOTE: Robust External Malware Detection Framework by Using Electromagnetic Signals.”
[21] Applied Computer Security Associates and Association for Computing Machinery, ACSAC 2021 : 37th Annual Computer Security Applications Conference : proceedings : Virtual Conference, 6-10 December 2021.
[22] Q. Le, L. Miralles-Pechuán, A. Sayakkara, N. A. Le-Khac, and M. Scanlon, “Identifying Internet of Things software activities using deep learning-based electromagnetic side-channel analysis,” Forensic Science International: Digital Investigation, vol. 39, Dec. 2021, doi: 10.1016/j.fsidi.2021.301308.
[23] A. Sayakkara, N. A. Le-Khac, and M. Scanlon, “Leveraging Electromagnetic Side-Channel Analysis for the Investigation of IoT Devices,” Digit Investig, vol. 29, pp. S94–S103, Jul. 2019, doi: 10.1016/j.diin.2019.04.012.
[24] N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application Inference using Machine Learning based Side Channel Analysis,” Jul. 2019, [Online]. Available: http://arxiv.org/abs/1907.04428
[25] M. A. Bergstedt, “AFIT Scholar AFIT Scholar Malware Detection Using Electromagnetic Side-Channel Analysis Malware Detection Using Electromagnetic Side-Channel Analysis.” [Online]. Available: https://scholar.afit.edu/etd/5316
[26] M. M. Khalifa, O. N. Ucan, and K. M. A. Alheeti, “Supervised Machine Learning to Enhance Security in Mobile Ad Hoc Networks,” in Proceedings - International Conference on Developments in eSystems Engineering, DeSE, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 493–498. doi: 10.1109/DESE54285.2021.9719511.
[27] F. S. Mubarek, S. A. Aliesawi, K. M. A. Alheeti, and N. M. Alfahad, “Urban-AODV: an improved AODV protocol for vehicular ad-hoc networks in urban environment,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 3030–3036, 2018.
[28] S. R. Katte and K. E. Fernandez, “A Survey Report on Hardware Trojan Detection by Multiple-Parameter Side-Channel Analysis,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.02012
[29] K. Ryan, “Return of the hidden number problem: A widespread and novel key extraction attack on ECDSA and DSA,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019, no. 1, pp. 146–168, 2019, doi: 10.13154/tches.v2019.i1.146-168.
[30] M. S. Ibrahim Alsumaidaie, K. M. Ali Alheeti, and A. K. Alaloosy, “Intelligent Detection of Distributed Denial of Service Attacks: A Supervised Machine Learning and Ensemble Approach,” Iraqi Journal for Computer Science and Mathematics, vol. 4, no. 3, pp. 12–24, 2023, doi: 10.52866/ijcsm.2023.02.03.002.
[31] A. K. Kareem, A. M. Shaban, A. A. Nafea, M. Aljanabi, S. A. S. Aliesawi, and M. Mal-Ani, “Detecting Routing Protocol Low Power and Lossy Network Attacks Using Machine Learning Techniques,” in 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 2024, pp. 57–62.
[32] S. A. Rafa, Z. M. Al-qfail, A. A. Nafea, S. F. Abd-hood, M. M. Al-Ani, and S. A. Alameri, “A Birds Species Detection Utilizing an Effective Hybrid Model,” in 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 2024, pp. 705–710.
[33] B. Al-Rami, K. M. A. Alheeti, W. M. Aldosari, S. M. Alshahrani, and S. M. Al-Abrez, “A New Classification Method for Drone-Based Crops in Smart Farming”, Int. J. Interact. Mob. Technol., vol. 16, no. 09, pp. pp. 164–174, May 2022.
[34] H. J. Mohammed, A. A. Nafea, H. K. Almulla, S. A. S. Aliesawi, and M. M. Al-Ani, “An Effective Hybrid Model for Skin Cancer Detection Using Transfer Learning,” in 2023 16th International Conference on Developments in eSystems Engineering (DeSE), 2023, pp. 840–845.
[35] A. A. Nafea et al., “Enhancing Student’s Performance Classification Using Ensemble Modeling,” Iraqi J. Comput. Sci. Math., vol. 4, no. 4, pp. 204–214, 2023.
[36] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308–6325, 2020. doi: 10.1109/JSTARS.2020.3026724.
[37] Z. H. Abdaljabar, O. N. Ucan, and K. M. A. Alheeti, “An intrusion detection system for IoT using KNN and decision-tree based classification,” in 2021 International conference of modern trends in information and communication technology industry (MTICTI), 2021, pp. 1–5.
[38] A. Sayakkara, N. A. Le-Khac, and M. Scanlon, “Leveraging Electromagnetic Side-Channel Analysis for the Investigation of IoT Devices,” Digit Investig, vol. 29, pp. S94–S103, Jul. 2019, doi: 10.1016/j.diin.2019.04.012.