Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 15 , Issue 1 , PP: 133-150, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network

K. Saravanan 1 * , R. Santhosh 2

  • 1 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India - (santhoshrd@gmail.com)
  • 2 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India - (saraengg@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.150111

    Received: February 03, 2024 Revised: April 23, 2024 Accepted: July 26, 2024
    Abstract

    The ability to facilitate high-performance task offloading while maintaining participant confidence is crucial, but not essential, to Cloud-Edge-Network (CEN) computing due to the geographic distribution and operation by various parties. Additionally, conflicts of interest may arise among the highly dynamic and diverse CEN members who provide resources. This study proposes a collaborative task offloading framework for CEN computing, called Trustable Block Chain and Bandwidth Sensible-based Task Offloading (TBBS-TO) and resource allocation empowered CEN. The E-PEFT consensus algorithm for block chain in task offloading optimizes resource allocation and task execution by dynamically adjusting consensus parameters based on environmental factors and performance feedback. Moreover, in our work for alleviating heterogeneous issues IoT users are mobility aware clustering is performed using Bi-directional Clustering Algorithm based on Local Density (BCALoD). In this work, block chain is essential to BC-CED's core functions, such as task delegation, resource utilization brokerage, and bandwidth sensible resource allocation. By modifying the block chain consensus procedure, TBBS-TO distinguish itself from other solutions by enabling participants to reach a consensus on task offloading. To achieve this, we formulate the offloading problem by considering both network performance and the computational capabilities of potential nodes. Using Multi-agent Double Deep Q-Network (MA-DDQN) based technique, TBBS-TO allow participants to compete for the right to produce a block by evaluating offloading policies and selecting the most effective one for the next period. Additionally, dynamically bandwidth sensible resource allocation is performed by considering significant parameters. Comprehensive testing on a commercial block chain platform has shown that TBBS-TO outperforms existing solutions in task offloading and blockchain maintenance.

    Keywords :

    Task Offloading , Trustable Blockchain , Multi-agent Double Deep Q-Network (MA-DDQN) , Bi-directional Clustering , Resource Management , Resource Allocation

    References

    [1]          Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega112, 102690.

    [2]          Ambeth Kumar, V.D. Vaishali,S. Shweta, B. (2015). Basic Study of the Human Foot. Biomedical and Pharmacology, 8(1), 435-444.

    [3]          Zhang, Y., Li, B., Liu, B., Hu, Y., & Zheng, H. (2021). A privacy-aware PUFs-based multiserver authentication protocol in cloud-edge IoT systems using blockchain. IEEE Internet of Things Journal8(18), 13958-13974.

    [4]          Devi Murugavel, Kiruthiga, Parthasarathy Ramadass, Rakesh Kumar Mahendran, Arfat Ahmad Khan, Mohd Anul Haq, Sultan Alharby, and Ahmed Alhussen. 2022. "Maintaining Effective Node Chain Connectivity in the Network with Transmission Power of Self-Arranged AdHoc Routing in Cluster Scenario" Electronics 11, no. 15: 2455. https://doi.org/10.3390/electronics11152455.

    [5]          Zhang, F., Han, G., Liu, L., Martínez-García, M., & Peng, Y. (2021). Joint optimization of cooperative edge caching and radio resource allocation in 5G-enabled massive IoT networks. IEEE Internet of Things journal8(18), 14156-14170.

    [6]          Sherubha, “Graph Based Event Measurement for Analyzing Distributed Anomalies in Sensor Networks”, Sådhanå(Springer), 45:212, https://doi.org/10.1007/s12046-020-01451-w

    [7]          Piyush K. Pareek, Pixel Level Image Fusion in Moving objection Detection and Tracking with Machine Learning “,Fusion: Practice and Applications, Volume 2 , Issue 1 , PP: 42-60, 2020

    [8]          Shivam Grover, Kshitij Sidana, Vanita Jain, “Egocentric Performance Capture: A Review”, Fusion: Practice and Applications, Volume 2, Issue 2 , PP: 64-73, 2020.

    [9]          Abdel Nasser H. Zaied, Mahmoud Ismail and Salwa El- Sayed, A Survey on Meta-heuristic Algorithms for Global Optimization Problems, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 48-60, 2020

    [10]       Mahmoud H.Alnamoly, Ahmed M. Alzohairy, Ibrahim M. El-Henawy, “A survey on gel images analysis software tools, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 40-47, 2021.

    [11]       Yu, S., & Park, Y. (2022). A robust authentication protocol for wireless medical sensor networks using blockchain and physically unclonable functions. IEEE Internet of Things Journal9(20), 20214-20228.

    [12]       Jacob, I. J., & Darney, P. E. (2021). Design of deep learning algorithm for IoT application by image based recognition. Journal of ISMAC3(03), 276-290.

    [13]       Kumar, V.D.A., Sharmila, S., Kumar, A. et al.  (2023). A novel solution for finding postpartum haemorrhage using fuzzy neural techniques. Neural Comput & Applic. 35(33), 23683–23696

    [14]       Panahi, U., & Bayılmış, C. (2023). Enabling secure data transmission for wireless sensor networks based IoT applications. Ain Shams Engineering Journal14(2), 101866.

    [15]       Nguyen, X. H., Nguyen, X. D., Huynh, H. H., & Le, K. H. (2022). Realguard: A lightweight network intrusion detection system for IoT gateways. Sensors22(2), 432.

    [16]       Sathya Preiya, V., and V. D. Ambeth Kumar. (2023). Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes. Diagnostics 13(12), 1983.

    [17]       Indhumathi, M., Ambeth Kumar, V.D, “ Future prediction of cardiovascular disease using deep learning technique”, Advances in Parallel Computing, 2021, 38, pp. 219–223

    [18]       Chen, L., Zhang, D. G., Zhang, J., Zhang, T., Wang, W. J., & Cao, Y. H. (2023). A novel offloading approach of IoT user perception task based on quantum behavior particle swarm optimization. Future Generation Computer Systems141, 577-594.

    [19]       Abd Elaziz, M., Abualigah, L., & Attiya, I. (2021). Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Future Generation Computer Systems124, 142-154.

    [20]       Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., ... & Zdravevski, E. (2021). A framework for malicious traffic detection in IoT healthcare environment. Sensors21(9), 3025.

    [21]       Ruphitha, S.V., Ambeth Kumar, V.D., “ Predictive analysis of postpartum haemorrhage using deep learning technique”, Advances in Parallel Computing, 2021, 38, pp. 168–172.

    [22]       Aazam, M., ul Islam, S., Lone, S. T., & Abbas, A. (2020). Cloud of things (CoT): Cloud-fog-IoT task offloading for sustainable Internet of Things. IEEE Transactions on Sustainable Computing7(1), 87-98.

    [23]       Vishwakarma, S., Goswami, R. S., Dutta, S., Sakthivel, V., Prakash, P., Vijayakumar, P., & Thangavelu, L. (2023). Cloud data storage with improved resource scheduling in healthcare application based on security system. Optik272, 170225.

    [24]       Cao, S., Zhan, Z., Dai, C., Chen, S., Zhang, W., & Han, Z. (2023). Delay-Aware and Energy-Efficient IoT Task Scheduling Algorithm with Double Blockchain Enabled in Cloud-Fog Collaborative Networks. IEEE Internet of Things Journal.

    [25]       Vijayasekaran, G., & Duraipandian, M. (2022). An efficient clustering and deep learning based resource scheduling for edge computing to integrate cloud-IoT. Wireless Personal Communications124(3), 2029-2044.

    [26]       Zhang, J., Li, T., Ying, Z., & Ma, J. (2022). Trust-based secure multi-cloud collaboration framework in cloud-fog-assisted IoT. IEEE Transactions on Cloud Computing11(2), 1546-1561.

    [27]       Raheema, A. Q., & Tarish, H. A. (2023). Secure data transfer aware grouping technique for cloud‐assisted Internet of things applications. International Journal of Communication Systems36(1), e4129.

    [28]       Narayanan, U., Paul, V., & Joseph, S. (2022). Decentralized blockchain based authentication for secure data sharing in Cloud-IoT: DeBlock-Sec. Journal of Ambient Intelligence and Humanized Computing13(2), 769-787.

    [29]       Raghavendar, K., Batra, I., & Malik, A. (2023). A robust resource allocation model for optimizing data skew and consumption rate in cloud-based IoT environments. Decision Analytics Journal7, 100200.

    [30]       Hemamalini, Selvamani, and Visvam Devadoss Ambeth Kumar. (2022). Outlier Based Skimpy Regularization Fuzzy Clustering Algorithm for Diabetic Retinopathy Image Segmentation. Symmetry,  14(12),  2512.

    [31]       Zolfaghari, B., Yazdinejad, A., Dehghantanha, A., Krzciok, J., & Bibak, K. (2022). The dichotomy of cloud and iot: Cloud-assisted iot from a security perspective. arXiv preprint arXiv:2207.01590.

    [32]       Vishwakarma, S., Goswami, R. S., Dutta, S., Sakthivel, V., Prakash, P., Vijayakumar, P., & Thangavelu, L. (2023). Cloud data storage with improved resource scheduling in healthcare application based on security system. Optik272, 170225.

    [33]       Bai, Z., Li, C., Pourzamani, J., Yang, X., & Li, D. (2024). Optimizing the resource allocation in cyber physical energy systems based on cloud storage and IoT infrastructure. Journal of Cloud Computing13(1), 59.

    [34]       Godhrawala, H., & Sridaran, R. (2022, November). Improving architectural reusability for resource allocation framework in futuristic cloud computing using decision tree based multi-objective automated approach. In International conference on advancements in smart computing and information security (pp. 397-415). Cham: Springer Nature Switzerland.

    [35]       Tay, M., & Senturk, A. (2023). A research on resource allocation algorithms in content of edge, fog and cloud. Materials Today: Proceedings81, 26-34.

    [36]       Chowdhary, S. K., & Rao, A. L. N. (2023). A task clustering based QoS aware scheduling algorithm for task execution in cloud-Iot model for education services. Multimedia Tools and Applications82(29), 44783-44800.

    [37]       Bu, T., Huang, Z., Zhang, K., Wang, Y., Song, H., Zhou, J., ... & Liu, S. (2024). Task scheduling in the internet of things: challenges, solutions, and future trends. Cluster Computing27(1), 1017-1046.

    [38]       Fazel, E., Najafabadi, H. E., Rezaei, M., & Leung, H. (2023). Unlocking the power of mist computing through clustering techniques in IoT networks. Internet of Things22, 100710.

    [39]       Su, M., Wang, G., & Choo, K. K. R. (2022). Prediction‐Based Resource Deployment and Task Scheduling in Edge‐Cloud Collaborative Computing. Wireless Communications and Mobile Computing2022(1), 2568503.

    [40]       Mahapatra, A., Majhi, S. K., Mishra, K., Pradhan, R., Rao, D. C., & Panda, S. K. (2024). An energy-aware task offloading and load balancing for latency-sensitive IoT applications in the Fog-Cloud continuum. IEEE Access.

    [41]       Yadav, A., Jana, P. K., Tiwari, S., & Gaur, A. (2022). Clustering-based energy efficient task offloading for sustainable fog computing. IEEE Transactions on Sustainable Computing8(1), 56-67.

    Cite This Article As :
    Saravanan, K.. , Santhosh, R.. TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network. Journal of Cybersecurity and Information Management, vol. , no. , 2025, pp. 133-150. DOI: https://doi.org/10.54216/JCIM.150111
    Saravanan, K. Santhosh, R. (2025). TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network. Journal of Cybersecurity and Information Management, (), 133-150. DOI: https://doi.org/10.54216/JCIM.150111
    Saravanan, K.. Santhosh, R.. TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network. Journal of Cybersecurity and Information Management , no. (2025): 133-150. DOI: https://doi.org/10.54216/JCIM.150111
    Saravanan, K. , Santhosh, R. (2025) . TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network. Journal of Cybersecurity and Information Management , () , 133-150 . DOI: https://doi.org/10.54216/JCIM.150111
    Saravanan K. , Santhosh R. [2025]. TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network. Journal of Cybersecurity and Information Management. (): 133-150. DOI: https://doi.org/10.54216/JCIM.150111
    Saravanan, K. Santhosh, R. "TBBS-TO: Trustable Blockchain and Bandwidth Sensible-based Task Offloading and Resource Allocation in Cloud-IoT Network," Journal of Cybersecurity and Information Management, vol. , no. , pp. 133-150, 2025. DOI: https://doi.org/10.54216/JCIM.150111