Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 15 , Issue 1 , PP: 101-114, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare

S. Geetha 1 * , M. Vigenesh 2 , R. Santhosh 3

  • 1 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (sgeethame@gmail.com)
  • 2 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (mvigenesh@gmail.com)
  • 3 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (santhoshrd@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.150109

    Received: February 01, 2024 Revised: April 23, 2024 Accepted: July 25, 2024
    Abstract

    Internet of Things (IoT) with Cloud Computing (CC) offers seamless connectivity in the healthcare environment which provide remote monitoring and diagnosis to the patients based on their health status. However, remote healthcare environment faced with security, privacy, bandwidth, and latency constraints which can be addressed by adopting blockchain, CC, and Edge Computing (EC) with medical IoT applications. In this research, HEART SAVIOUR model is developed which ensures real time remote heart disease analysis using Deep Learning (DL) and Transformer based method. The propounded research was tested and trained on the Hungarian and Cleveland dataset from the UCI repository. Initially, the patient data are passed to the edge gateway which are pre-processed in three folds which includes missing value replacement, noise reduction, and data normalization respectively. Within the edge gateway, the pre-processed data are subjected to encryption for guaranteeing secure communication using Binary Search Encryption Algorithm (BSEA). The encrypted sensitive data is then passed to the cloud server for automated remote heart disease analysis using Dense Nested Four Way Transformer Network (DNFW-Net). The analyzed results are securely stored in the block chain and based on the request raised by the healthcare specialists the automated and reliable reports are generated and securely provided to the remote patients. We have validated the proposed research on five performance metrics with 10% to 100% data distribution in which the proposed work achieves achievable performance than the existing works. The inclusion of edge computing, encryption, and block chain technologies with advanced AI algorithms, we ensure superior remote heart disease detection performance than the prior works.

    Keywords :

    Internet of Things (IoT) , Remote Heart Monitoring , Cloud Computing (CC) , Edge Computing , Block chain , Security

    References

    [1]          El-Rashidy, N., El-Sappagh, S., Islam, S. R., M. El-Bakry, H., & Abdelrazek, S. (2021). Mobile health in remote patient monitoring for chronic diseases: Principles, trends, and challenges. Diagnostics, 11(4), 607.

    [2]          Mahendran, R. K., & Velusamy, P. (2020). A secure fuzzy extractor based biometric key authentication scheme for Body Sensor Network in internet of medical things. Computer Communications, 153, 545–552. https://doi.org/10.1016/j.comcom.2020.01.077

    [3]          Philip, N. Y., Rodrigues, J. J., Wang, H., Fong, S. J., & Chen, J. (2021). Internet of Things for in-home health monitoring systems: Current advances, challenges and future directions. IEEE Journal on Selected Areas in Communications, 39(2), 300-310.

    [4]          Hilty, D. M., Armstrong, C. M., Luxton, D. D., Gentry, M. T., & Krupinski, E. A. (2021). A scoping review of sensors, wearables, and remote monitoring for behavioral health: uses, outcomes, clinical competencies, and research directions. Journal of Technology in Behavioral Science, 6, 278-313.

    [5]          Jiang, W., Majumder, S., Kumar, S., Subramaniam, S., Li, X., Khedri, R., ... & Deen, M. J. (2021). A wearable tele-health system towards monitoring COVID-19 and chronic diseases. IEEE Reviews in Biomedical Engineering, 15, 61-84.

    [6]          Sherubha, “Graph Based Event Measurement for Analyzing Distributed Anomalies in Sensor Networks”, Sådhanå(Springer), 45:212, https://doi.org/10.1007/s12046-020-01451-w

    [7]          Piyush K. Pareek, Pixel Level Image Fusion in Moving objection Detection and Tracking with Machine Learning “,Fusion: Practice and Applications, Volume 2 , Issue 1 , PP: 42-60, 2020

    [8]          Shivam Grover, Kshitij Sidana, Vanita Jain, “Egocentric Performance Capture: A Review”, Fusion: Practice and Applications, Volume 2, Issue 2 , PP: 64-73, 2020.

    [9]          Abdel Nasser H. Zaied, Mahmoud Ismail and Salwa El- Sayed, A Survey on Meta-heuristic Algorithms for Global Optimization Problems, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 48-60, 2020

    [10]       Mahmoud H.Alnamoly, Ahmed M. Alzohairy, Ibrahim M. El-Henawy, “A survey on gel images analysis software tools, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 40-47, 2021.

    [11]       Kumar, V.D.A., Sharmila, S., Kumar, A. et al.  (2023). A novel solution for finding postpartum haemorrhage using fuzzy neural techniques. Neural Comput & Applic. 35(33), 23683–23696

    [12]       Anikwe, C. V., Nweke, H. F., Ikegwu, A. C., Egwuonwu, C. A., Onu, F. U., Alo, U. R., & Teh, Y. W. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Systems with Applications, 202, 117362.

    [13]       Yang, Y., Wang, H., Jiang, R., Guo, X., Cheng, J., & Chen, Y. (2022). A review of IoT-enabled mobile healthcare: technologies, challenges, and future trends. IEEE Internet of Things Journal, 9(12), 9478-9502.

    [14]       Sivani, T., & Mishra, S. (2022). Wearable devices: evolution and usage in remote patient monitoring system. In Connected e-Health: Integrated IoT and Cloud Computing (pp. 311-332). Cham: Springer International Publishing.

    [15]       Bhuiyan, M. N., Rahman, M. M., Billah, M. M., & Saha, D. (2021). Internet of things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities. IEEE Internet of Things Journal, 8(13), 10474-10498.

    [16]       Hemamalini, Selvamani, and Visvam Devadoss Ambeth Kumar. (2022). Outlier Based Skimpy Regularization Fuzzy Clustering Algorithm for Diabetic Retinopathy Image Segmentation. Symmetry,  14(12),  2512.

    [17]       Aghdam, Z. N., Rahmani, A. M., & Hosseinzadeh, M. (2021). The role of the Internet of Things in healthcare: Future trends and challenges. Computer methods and programs in biomedicine, 199, 105903.

    [18]       Adeniyi, E. A., Ogundokun, R. O., & Awotunde, J. B. (2021). IoMT-based wearable body sensors network healthcare monitoring system. IoT in healthcare and ambient assisted living, 103-121.

    [19]       Rahman, A., Wadud, M. A. H., Islam, M. J., Kundu, D., Bhuiyan, T. A. U. H., Muhammad, G., & Ali, Z. (2024). Internet of medical things and blockchain-enabled patient-centric agent through sdn for remote patient monitoring in 5g network. Scientific Reports, 14(1), 5297.

    [20]       Mahendran, R. K., V., Prabhu., Parthasarathy.V., Usharani. T., Mary Judith. A., & Jagadeesan. S., (2021).  An energy-efficient centralized dynamic time scheduling for internet of healthcare things. Measurement, 186, 110230. https://doi.org/10.1016/j.measurement.2021.110230.

    [21]       Akhbarifar, S., Javadi, H. H. S., Rahmani, A. M., & Hosseinzadeh, M. (2023). A secure remote health monitoring model for early disease diagnosis in cloud-based IoT environment. Personal and Ubiquitous Computing, 27(3), 697-713.

    [22]       Nancy, A. A., Ravindran, D., Raj Vincent, P. D., Srinivasan, K., & Gutierrez Reina, D. (2022). Iot-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning. Electronics, 11(15), 2292.

    [23]       Balakrishnan, Chitra, and V. D. Ambeth Kumar. (2023). IoT-Enabled Classification of Echocardiogram Images for Cardiovascular Disease Risk Prediction with Pre-Trained Recurrent Convolutional Neural Networks. Diagnostics 13(4), 775

    [24]       Divya, K., Sirohi, A., Pande, S., & Malik, R. (2021). An IoMT assisted heart disease diagnostic system using machine learning techniques. Cognitive internet of medical things for smart healthcare: services and applications, 145-161.

    [25]       Desai, F., Chowdhury, D., Kaur, R., Peeters, M., Arya, R. C., Wander, G. S., ... & Buyya, R. (2022). HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing. Internet of Things, 17, 100485.

    [26]       Sathya Preiya, V., and V. D. Ambeth Kumar. (2023). Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes. Diagnostics 13(12), 1983.

    [27]       Basheer, S., Alluhaidan, A. S., & Bivi, M. A. (2021). Real-time monitoring system for early prediction of heart disease using Internet of Things. Soft Computing, 25(18), 12145-12158.

    [28]       Sekar, J., Aruchamy, P., Sulaima Lebbe Abdul, H., Mohammed, A. S., & Khamuruddeen, S. (2022). An efficient clinical support system for heart disease prediction using TANFIS classifier. Computational Intelligence, 38(2), 610-640.

    [29]       Chang, V., Bhavani, V. R., Xu, A. Q., & Hossain, M. A. (2022). An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics, 2, 100016.

    [30]       Mehmood, A., Iqbal, M., Mehmood, Z., Irtaza, A., Nawaz, M., Nazir, T., & Masood, M. (2021). Prediction of heart disease using deep convolutional neural networks. Arabian Journal for Science and Engineering, 46(4), 3409-3422.

    [31]       Jindal, H., Agrawal, S., Khera, R., Jain, R., & Nagrath, P. (2021). Heart disease prediction using machine learning algorithms. In IOP conference series: materials science and engineering (Vol. 1022, No. 1, p. 012072). IOP Publishing.

    [32]       Nagavelli, U., Samanta, D., & Chakraborty, P. (2022). Machine Learning Technology‐Based Heart Disease Detection Models. Journal of Healthcare Engineering, 2022(1), 7351061.

    [33]       Shynu, P. G., Menon, V. G., Kumar, R. L., Kadry, S., & Nam, Y. (2021). Blockchain-based secure healthcare application for diabetic-cardio disease prediction in fog computing. IEEE Access, 9, 45706-45720.

    [34]       Ghosh, U., Das, D., Chatterjee, P., & Shillingford, N. (2023, October). Federated Edge-Cloud Framework for Heart Disease Risk Prediction Using Blockchain. In IFIP International Internet of Things Conference (pp. 309-329). Cham: Springer Nature Switzerland.

    [35]       Wang, M., Zhang, H., Wu, H., Li, G., & Gai, K. (2022, May). Blockchain-based secure medical data management and disease prediction. In Proceedings of the Fourth ACM International Symposium on Blockchain and Secure Critical Infrastructure (pp. 71-82).

    [36]       Hasanova, H., Tufail, M., Baek, U. J., Park, J. T., & Kim, M. S. (2022). A novel blockchain-enabled heart disease prediction mechanism using machine learning. Computers and Electrical Engineering, 101, 108086.

    [37]       Abbas, A., Alroobaea, R., Krichen, M., Rubaiee, S., Vimal, S., & Almansour, F. M. (2024). Blockchain-assisted secured data management framework for health information analysis based on Internet of Medical Things. Personal and ubiquitous computing, 28(1), 59-72.

    [38]       Zhao, J., Wang, W., Wang, D., Wang, X., & Mu, C. (2022). PMHE: a wearable medical sensor assisted framework for health care based on blockchain and privacy computing. Journal of Cloud Computing, 11(1), 96.

    [39]       Tomar, A., Gupta, N., Rani, D., & Tripathi, S. (2023). Blockchain-assisted authenticated key agreement scheme for IoT-based healthcare system. Internet of Things, 23, 100849.

    [40]       Golec, M., Gill, S. S., Parlikad, A. K., & Uhlig, S. (2023). HealthFaaS: AI based smart healthcare system for heart patients using serverless computing. IEEE Internet of Things Journal.

    Cite This Article As :
    Geetha, S.. , Vigenesh, M.. , Santhosh, R.. HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare. Journal of Cybersecurity and Information Management, vol. , no. , 2025, pp. 101-114. DOI: https://doi.org/10.54216/JCIM.150109
    Geetha, S. Vigenesh, M. Santhosh, R. (2025). HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare. Journal of Cybersecurity and Information Management, (), 101-114. DOI: https://doi.org/10.54216/JCIM.150109
    Geetha, S.. Vigenesh, M.. Santhosh, R.. HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare. Journal of Cybersecurity and Information Management , no. (2025): 101-114. DOI: https://doi.org/10.54216/JCIM.150109
    Geetha, S. , Vigenesh, M. , Santhosh, R. (2025) . HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare. Journal of Cybersecurity and Information Management , () , 101-114 . DOI: https://doi.org/10.54216/JCIM.150109
    Geetha S. , Vigenesh M. , Santhosh R. [2025]. HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare. Journal of Cybersecurity and Information Management. (): 101-114. DOI: https://doi.org/10.54216/JCIM.150109
    Geetha, S. Vigenesh, M. Santhosh, R. "HEART SAVIOUR: A Dense Network Four Way Transformer Network for Remote Heart Disease Monitoring using Medical Sensors for Blockchain Cloud Assisted Healthcare," Journal of Cybersecurity and Information Management, vol. , no. , pp. 101-114, 2025. DOI: https://doi.org/10.54216/JCIM.150109