Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 323-333, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Enhanced Credit Card Fraud Detection Using Deep Learning Techniques

Ola Imran Obaid 1 * , Ali Yakoob Al-Sultan 2

  • 1 College of Science for Women-Computer Science Dept, University of Babylon, Babylon, Iraq - (ola.alghazaly.gsci135@student.uobabylon.edu.iq)
  • 2 College of Science for Women-Computer Science Dept, University of Babylon, Babylon, Iraq - (ali.alsultan@uobabylon.edu.iq)
  • Doi: https://doi.org/10.54216/JCIM.140223

    Received: January 28, 2024 Revised: April 05, 2024 Accepted: July 11, 2024
    Abstract

    Credit card fraud is a huge challenge in the financial sector, causing huge losses every year. The problem is exacerbated by increased marketing and sophisticated fraudulent activities. This study addresses the important issue of accurate real-time detection of fraudulent transactions to minimize financial losses and enhance transactional security. The main objective of this study is to develop a comprehensive fraud detection algorithm using deep learning techniques, specially designed to address the complexity and volume of modern credit card transactions. Key contributions of this research include the presentation of a new deep learning algorithm optimized for credit card fraud detection, the integration of feature engineering techniques to improve the performance of the model, and a potential scalable solution analysis in real-time Significant improvement in proven rates. The results show that the proposed deep learning-based model achieves higher accuracy and lower false positive rate, giving financial institutions a significant advantage in protecting against fraudulent activities about the character. This study highlights the power of deep learning in reforming fraud detection systems, and lays the foundation for future developments in this important area.

    Keywords :

    Credit Card Fraud Detection , Deep Learning Techniques , Neural Networks , Real-Time Analysis , Feature Engineering , Fraud Detection Accuracy , Financial Security

    References

    [1]       H. John and S. Naaz, “Credit Card Fraud Detection using Local Outlier Factor and Isolation Forest International Journal of Computer Sciences and Engineering Open Access Credit Card Fraud Detection using Local Outlier Factor and Isolation,” no. April, 2019, doi: 10.26438/ijcse/v7i4.10601064.

    [2]       C. Jiang, “Mitigating Cybersecurity challenges in the Financial Sector with Arti fi cial Intelligence,” Univ. Strat. Glas., no. 2021, pp. 1–15, 2021, [Online]. Available: https://strathprints.strath.ac.uk/75985/1/Jiang_Broby_CeFRI_2021_Mitigating_cybersecurity_challenges_in_the_financial_sector_with_Artificial_Intelligence.pdf

    [3]       M. Alamri and M. Ykhlef, “Survey of Credit Card Anomaly and Fraud Detection Using Sampling Techniques,” Electron., vol. 11, no. 23, 2022, doi: 10.3390/electronics11234003.

    [4]       E. A. L. M. Btoush, X. Zhou, R. Gururajan, K. C. Chan, R. Genrich, and P. Sankaran, “A systematic review of literature on credit card cyber fraud detection using machine and deep learning,” PeerJ Comput. Sci., vol. 9, pp. 1–66, 2023, doi: 10.7717/PEERJ-CS.1278.

    [5]       Vimala, S. Krishnan, V. Raj, M. Kumar, A. Janakiraman, M. "Object Detection Using Deep Learning," Journal of Journal of Cognitive Human-Computer Interaction, vol. 6, no. 1, pp. 32-38, 2023. DOI: https://doi.org/10.54216/JCHCI.060103

    [6]       D. Trisanto, N. Rismawati, M. F. Mulya, and F. I. Kurniadi, “Modified Focal Loss in Imbalanced XGBoost for Credit Card Fraud Detection,” Int. J. Intell. Eng. Syst., vol. 14, no. 4, pp. 350–358, 2021, doi: 10.22266/ijies2021.0831.31.

    [7]       Asad, R. Hajjari, A. "Intelligent Data Processing and Mining of Histopathological Images using Improved Tunicate Swarm Algorithm with Deep Learning," Journal of International Journal of Advances in Applied Computational Intelligence, vol. 5, no. 1, pp. 40-55, 2024. DOI: https://doi.org/10.54216/IJAACI.050104

    [8]       I. Benchaji, S. Douzi, and B. El Ouahidi, “Credit card fraud detection model based on LSTM recurrent neural networks,” J. Adv. Inf. Technol., vol. 12, no. 2, pp. 113–118, 2021, doi: 10.12720/jait.12.2.113-118.

    [9]       N. K. Trivedi, S. Simaiya, and U. K. Lilhore, “An Efficient Credit Card Fraud Detection Model Based on Machine Learning Methods An Efficient Credit Card Fraud Detection Model Based on Machine Learning Methods,” no. June, 2020.

    [10]     K. Vengatesan, A. Kumar, S. Yuvraj, V. D. Ambeth Kumar, and S. S. Sabnis, “Credit card fraud detection using data analytic techniques,” Adv. Math. Sci. J., vol. 9, no. 3, pp. 1185–1196, 2020, doi: 10.37418/amsj.9.3.43.

    [11]     E. Amusan et al., “Credit Card Fraud Detection on Skewed Data using Machine Learning Techniques,” LAUTECH J. Comput. Informatics, vol. 2, no. 1, pp. 49–56, 2021, [Online]. Available: https://www.researchgate.net/publication/354780529

    [12]     I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM deep model,” J. Big Data, 2021, doi: 10.1186/s40537-021-00541-8.

    [13]     T. Y. Wu and Y. T. Wang, “Locally Interpretable One-Class Anomaly Detection for Credit Card Fraud Detection,” Proc. - 2021 Int. Conf. Technol. Appl. Artif. Intell. TAAI 2021, pp. 25–30, 2021, doi: 10.1109/TAAI54685.2021.00014.

    [14]     Audumbar, A. Singh, S. K., H. Gadilkar, S. Benisemeni, Z. Shivaji, G. Imuede, J. "Investigating Recent Advances In Coded Diffraction Patterns using Deep Learning," Journal of International Journal of Wireless and Ad Hoc Communication, vol. 7, no. 1, pp. 62-71, 2023. DOI: https://doi.org/10.54216/IJWAC.070106

    [15]     M. J. Madhurya, H. L. Gururaj, B. C. Soundarya, K. P. Vidyashree, and A. B. Rajendra, “Exploratory analysis of credit card fraud detection using machine learning techniques,” vol. 3, no. April, pp. 31–37, 2022, doi: 10.1016/j.gltp.2022.04.006.

    [16]     Z. Salekshahrezaee, J. L. Leevy, and T. M. Khoshgoftaar, “The effect of feature extraction and data sampling on credit card fraud detection,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00684-w.

    [17]     A. Mniai, M. Tarik, and K. Jebari, “A Novel Framework for Credit Card Fraud Detection,” IEEE Access, vol. 11, no. October, pp. 112776–112786, 2023, doi: 10.1109/ACCESS.2023.3323842.

    [18]     S. Jiang, R. Dong, J. Wang, and M. Xia, “Credit Card Fraud Detection Based on Unsupervised Attentional Anomaly Detection Network,” Systems, vol. 11, no. 6, pp. 1–14, 2023, doi: 10.3390/systems11060305.

    [19]     V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 165, pp. 631–641, 2019, doi: 10.1016/j.procs.2020.01.057.

    [20]     H. Najadat, O. Altiti, A. A. Aqouleh, and M. Younes, “Credit Card Fraud Detection Based on Machine and Deep Learning,” 2020 11th Int. Conf. Inf. Commun. Syst. ICICS 2020, no. May, pp. 204–208, 2020, doi: 10.1109/ICICS49469.2020.239524.

    [21]     S. Rao, P. Poojary, J. Somaiya, and P. Mahajan, “a Comparative Study Between Various Preprocessing Techniques for Machine Learning,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 3, pp. 431–438, 2020, doi: 10.33564/ijeast.2020.v05i03.069.

    [22]     Z. S. Rubaidi, B. Ben Ammar, and M. Ben Aouicha, “Fraud Detection Using Large-scale Imbalance Dataset,” Int. J. Artif. Intell. Tools, vol. 31, no. 8, 2022, doi: 10.1142/S0218213022500373.

    [23]     U. Ependi, A. F. Rochim, and A. Wibowo, “A Hybrid Sampling Approach for Improving the Classification of Imbalanced Data Using ROS and NCL Methods,” Int. J. Intell. Eng. Syst., vol. 16, no. 3, pp. 345–361, 2023, doi: 10.22266/ijies2023.0630.28.

    [24]     A. O. Salau, E. D. Markus, T. A. Assegie, C. O. Omeje, and J. N. Eneh, “Influence of Class Imbalance and Resampling on Classification Accuracy of Chronic Kidney Disease Detection,” Math. Model. Eng. Probl., vol. 10, no. 1, pp. 48–54, 2023, doi: 10.18280/MMEP.100106.

    [25]     Y. Sun et al., “Borderline SMOTE Algorithm and Feature Selection‐Based Network Anomalies Detection Strategy,” Energies, vol. 15, no. 13, 2022, doi: 10.3390/en15134751.

    [26]     M. Awad and S. Fraihat, “Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems,” J. Sens. Actuator Networks, vol. 12, no. 5, 2023, doi: 10.3390/jsan12050067.

    [27]     W. Lian, G. Nie, B. Jia, D. Shi, Q. Fan, and Y. Liang, “An intrusion detection method based on decision tree-recursive feature elimination in ensemble learning,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/2835023.

    [28]     C. V. Priscilla and D. P. Prabha, “A two-phase feature selection technique using mutual information and XGB-RFE for credit card fraud detection,” Int. J. Adv. Technol. Eng. Explor., vol. 8, no. 85, pp. 1656–1668, 2021, doi: 10.19101/IJATEE.2021.874615.

    [29]     B. Dhomse Kanchan and M. Mahale Kishor, “Study of machine learning algorithms for special disease prediction using principal of component analysis,” Proc. - Int. Conf. Glob. Trends Signal Process. Inf. Comput. Commun. ICGTSPICC 2016, no. February, pp. 5–10, 2017, doi: 10.1109/ICGTSPICC.2016.7955260.

    [30]     K. Pothuganti, “Overview on Principal Component Analysis Algorithm in Machine Learning,” @International Res. J. Mod. Eng., no. October, 2020, [Online]. Available: www.irjmets.com

    [31]     I. Md. Sanzidul, S. M. Sadia Sultana, S. Abujar, and S. A. Hossain, “Sequence-to-sequence Bangla sentence generation with LSTM recurrent neural networks,” Procedia Comput. Sci., vol. 152, pp. 51–58, 2019, doi: 10.1016/j.procs.2019.05.026.

    [32]     M. H. Al-Tai and B. M. Nema, “Detecting Arabic Misinformation Using an Attention Mechanism-Based Model,” Iraqi J. Comput. Sci. Math., vol. 5, no. 1, pp. 285–298, 2024, doi: 10.52866/ijcsm.2024.05.01.020.

    [33]     Y. Murugan, M. Vijayalakshmi, L. Selvaraj, and S. Balaraman, “Credit Card Fraud Detection Using CNN,” Lect. Notes Networks Syst., vol. 340 LNNS, no. 1, pp. 194–204, 2022, doi: 10.1007/978-3-030-94507-7_19.

    [34]     A. Yara, A. Albatul, and R. M. A, “A Financial Fraud Detection Model Based on LSTM Deep Learning Technique,” J. Appl. Secur. Res., vol. 0, no. 0, pp. 1–19, 2020, doi: 10.1080/19361610.2020.1815491.

    [35]     M. Ala’raj, M. F. Abbod, and M. Majdalawieh, “Modelling customers credit card behaviour using bidirectional LSTM neural networks,” J. Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00461-7.

    [36]         A. Mohari, J. Dowerah, K. Das, F. Koucher, and D. J. Bora, “Credit Card Fraud Detection Techniques: A Review,” no. July, pp. 157–166, 2021, doi: 10.1007/978-981-16-1048-6_12

    Cite This Article As :
    Imran, Ola. , Yakoob, Ali. Enhanced Credit Card Fraud Detection Using Deep Learning Techniques. Journal of Cybersecurity and Information Management, vol. , no. , 2024, pp. 323-333. DOI: https://doi.org/10.54216/JCIM.140223
    Imran, O. Yakoob, A. (2024). Enhanced Credit Card Fraud Detection Using Deep Learning Techniques. Journal of Cybersecurity and Information Management, (), 323-333. DOI: https://doi.org/10.54216/JCIM.140223
    Imran, Ola. Yakoob, Ali. Enhanced Credit Card Fraud Detection Using Deep Learning Techniques. Journal of Cybersecurity and Information Management , no. (2024): 323-333. DOI: https://doi.org/10.54216/JCIM.140223
    Imran, O. , Yakoob, A. (2024) . Enhanced Credit Card Fraud Detection Using Deep Learning Techniques. Journal of Cybersecurity and Information Management , () , 323-333 . DOI: https://doi.org/10.54216/JCIM.140223
    Imran O. , Yakoob A. [2024]. Enhanced Credit Card Fraud Detection Using Deep Learning Techniques. Journal of Cybersecurity and Information Management. (): 323-333. DOI: https://doi.org/10.54216/JCIM.140223
    Imran, O. Yakoob, A. "Enhanced Credit Card Fraud Detection Using Deep Learning Techniques," Journal of Cybersecurity and Information Management, vol. , no. , pp. 323-333, 2024. DOI: https://doi.org/10.54216/JCIM.140223