Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 263-274, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM)

B. R. Sathishkumar 1 * , K. M. Monica 2 , D. Sasikala 3 , M. N. Sudha 4

  • 1 Associate Professor, Department of ECE, Sri Ramakrishna Engineering College, Coimbatore - 641022, Tamilnadu, India - (sathishkumar.b@srec.ac.in)
  • 2 Assistant professor, School of Computer Science and engineering. VIT, Chennai, India - (monica.km@vit.ac.in)
  • 3 Professor, Bannari Amman Institute of technology, Sathyamangalam-638401, Erode District, Tamil Nadu, India - (sasiramesh04@gmail.com)
  • 4 Assistant Professor, Department of Information Technology, Government College of Engineering, Erode – 638316, India - (mnsudhairtt@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.140218

    Received: January 17, 2024 Revised: March 27, 2024 Accepted: July 06, 2024
    Abstract

    In today's digital era, ensuring robust and secure authentication mechanisms is crucial. Multi-fusion biometric authentication systems have emerged as a powerful solution to enhance security and reliability by integrating multiple biometric traits. This paper presents a novel Multi-Fusion Biometric Authentication approach using Minutiae-Driven Fixed-Size Template Matching (MFTM). The proposed method leverages the unique features of minutiae points in fingerprints and combines them with other biometric modalities, such as iris and facial recognition, to create a fixed-size template for matching. The fusion process involves extracting and normalizing minutiae points from the fingerprint, followed by their integration with iris and facial features using a robust feature fusion algorithm. The fixed-size template ensures consistency and efficiency in the matching process, addressing challenges related to template size variability and computational overhead. Extensive experiments conducted on standard biometric datasets demonstrate that the proposed MFTM approach significantly enhances authentication accuracy, reduces false acceptance and rejection rates, and provides a highly secure and scalable authentication solution suitable for various applications, including access control and identity verification. The results show an authentication accuracy of 98.7%, a false acceptance rate (FAR) of 0.2%, and a false rejection rate (FRR) of 0.5%. Additionally, the computational time for matching is reduced by 25% compared to traditional methods, highlighting the efficiency and practicality of the proposed approach.

    Keywords :

    Multi-Fusion Biometric Authentication ,   , Minutiae-Driven ,   , Fixed-Size Template Matching (MFTM) ,   , Fingerprint Recognition , Iris Recognition ,   , Facial Recognition , Biometric Template , Feature Fusion , Authentication Accuracy

    References

    [1]       Poomalai, S., Venkatesan, K., Subbaraj, S., & Radha, S. (2024). Secure and privacy improved cloud user authentication in biometric multimodal multi fusion using blockchain-based lightweight deep instance-based DetectNet. Network: Computation in Neural Systems, 1-19.

    [2]       Tiwari, S., Raja, R., Wadawadagi, R. S., Naithani, K., Raja, H., & Ingle, D. (2024). Emerging Biometric Modalities and Integration Challenges. In Online Identity-An Essential Guide. IntechOpen.

    [3]       Gorur, K., Olmez, E., Ozer, Z., & Cetin, O. (2023). EEG-Driven biometric authentication for investigation of fourier synchrosqueezed transform-ICA robust framework. Arabian Journal for Science and Engineering, 48(8), 10901-10923.

    [4]       Guo, Y., Huang, H., Chen, X., Zhao, H., & Wang, Y. (2024, April). Audio Deepfake Detection with Self-Supervised Wavlm and Multi-Fusion Attentive Classifier. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 12702-12706). IEEE.

    [5]       Shaheed, K., Szczuko, P., Kumar, M., Qureshi, I., Abbas, Q., & Ullah, I. (2024). Deep learning techniques for biometric security: A systematic review of presentation attack detection systems. Engineering Applications of Artificial Intelligence, 129, 107569.

    [6]       Bhamare, D. R., & Patil, P. S. (2023). Person Identification System Using Periocular Biometrics Based on Hybrid Optimal Dense Capsule Network. International Journal of Pattern Recognition and Artificial Intelligence, 37(16), 2356026.

    [7]       Fei, F., Jia, Z., Gu, C., Yang, R., & Wu, C. (2023, July). Biometric Identification Based on PCA for Palmprint Feature Extraction. In 2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 475-479). IEEE.

    [8]       Salama, G. M., El-Shafai, W., El-Gazar, S., Omar, B., Hassan, A. A., Hussein, A. I., & Abd El-Samie, F. E. (2023). Efficient implementation of double random phase encoding and empirical mode decomposition for cancelable biometrics. Optical and Quantum Electronics, 55(14), 1210.

    [9]       Yang, X., Jia, X., Gong, D., Yan, D. M., Li, Z., & Liu, W. (2023). LARNeXt: End-to-end lie algebra residual network for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), 11961-11976.

    [10]    Senthilkumaran, N.. Automated Brain Tumor Detection and Classification in MRI Images: A Hybrid Image Processing Techniques. Journal of Journal of Cybersecurity and Information Management, vol. 14, no. 2, 2024, pp. 239-252. DOI: https://doi.org/10.54216/JCIM.140216.

    [11]    Perumal, Ramani. , Bharathi, Subbiah. A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Journal of Cybersecurity and Information Management, vol. 14, no. 2, 2024, pp. 214-238. DOI: https://doi.org/10.54216/JCIM.140215.

    [12]    Kumar, S. S., Rinku, D. R., Kumar, A. P., Maddula, R., & Palagan, C. A. (2023). An IOT framework for detecting cardiac arrhythmias in real-time using deep learning resnet model. Measurement: Sensors, 29, 100866.

    [13]    Qiu, X., Wang, S., Wang, R., Zhang, Y., & Huang, L. (2023). A multi-head residual connection GCN for EEG emotion recognition. Computers in Biology and Medicine, 163, 107126.

    [14]    Aggarwal, S., Bhola, G., & Vishwakarma, D. K. (2024). Weighted voting ensemble of hybrid CNN-LSTM Models for vision-based human activity recognition. Multimedia Tools and Applications, 1-39.

    [15]    Abbas, F., & Taeihagh, A. (2024). Unmasking deepfakes: A systematic review of deepfake detection and generation techniques using artificial intelligence. Expert Systems with Applications, 124260.

    Cite This Article As :
    R., B.. , M., K.. , Sasikala, D.. , N., M.. Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM). Journal of Cybersecurity and Information Management, vol. , no. , 2024, pp. 263-274. DOI: https://doi.org/10.54216/JCIM.140218
    R., B. M., K. Sasikala, D. N., M. (2024). Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM). Journal of Cybersecurity and Information Management, (), 263-274. DOI: https://doi.org/10.54216/JCIM.140218
    R., B.. M., K.. Sasikala, D.. N., M.. Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM). Journal of Cybersecurity and Information Management , no. (2024): 263-274. DOI: https://doi.org/10.54216/JCIM.140218
    R., B. , M., K. , Sasikala, D. , N., M. (2024) . Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM). Journal of Cybersecurity and Information Management , () , 263-274 . DOI: https://doi.org/10.54216/JCIM.140218
    R. B. , M. K. , Sasikala D. , N. M. [2024]. Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM). Journal of Cybersecurity and Information Management. (): 263-274. DOI: https://doi.org/10.54216/JCIM.140218
    R., B. M., K. Sasikala, D. N., M. "Multi-Fusion Biometric Authentication using Minutiae-Driven Fixed-Size Template Matching (MFTM)," Journal of Cybersecurity and Information Management, vol. , no. , pp. 263-274, 2024. DOI: https://doi.org/10.54216/JCIM.140218