Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 214-238, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques

Ramani Perumal 1 , Subbiah Bharathi Venkatachalam 2

  • 1 Assistant Professor, SRM Institute of Science and Technology, Ramapuram, Chennai-600089, India - (ramanip@srmist.edu.in;)
  • 2 Director, SRM Institute of Science and Technology, Ramapuram, Chennai-600089, India - (director@srmrmp.edu.in)
  • Doi: https://doi.org/10.54216/JCIM.140215

    Received: January 14, 2024 Revised: March 24, 2024 Accepted: July 03, 2024
    Abstract

    Stone monuments stand as enduring testaments to human history and cultural heritage, yet they are susceptible to deterioration over time. In this paper, we propose a comprehensive approach for the automated detection and classification of cracks in ancient monuments, integrating machine learning and advanced image processing techniques. Our method addresses the pressing need for efficient and objective assessment of structural integrity in these invaluable artifacts. The proposed algorithm begins with preprocessing steps, including image enhancement using adaptive histogram equalization to improve crack visibility. Subsequently, feature extraction techniques such as Grey Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) are applied to capture essential characteristics of crack patterns. Central to our approach are the Back Propagation Neural Network (BPNN) and Improved Support Vector Machine (ISVM) classifiers, which are trained on the extracted features to detect and classify cracks with high accuracy. The BPNN learns complex relationships between input features and crack types, while the ISVM leverages a margin-based approach for robust classification. Through extensive experimentation on a diverse dataset of ancient monuments, we demonstrate the effectiveness of our approach in accurately identifying and categorizing cracks. The proposed method offers a scalable and objective solution for monitoring the structural health of ancient monuments, contributing to proactive conservation efforts and the preservation of cultural heritage.

    Keywords :

    Stone monuments , Back Propagation Neural Network (BPNN) and Improved Support Vector Machine (ISVM) , Grey Level Co-occurrence Matrix (GLCM) , Machine Learning

    References

    [1]          Kordatos, E.Z., Exarchos, D.A., Stavrakos, C., Moropoulou, A. and Matikas, T.E., “Infrared   thermographic inspection of murals and characterization of degradation in historic monuments,” Construction and Building Materials, 48, pp. 1261-1265, 2013.

    [2]          Avdelidis, N. P. and Moropoulou, A., “Applications of infrared thermography for the investigation of historic structures,” Journal of Cultural Heritage, 5(1), pp. 119- 127,2004

    [3]          Moropoulou, A., Avdelidis, N.P., Koui, M. and Kanellopoulos, N.K. , “Dual band    infrared  thermography as a NDT tool for the characterization of  the building materials and   conservation  performance in historic structures,”  MRS Online  Proceedings Library  Archive ,591 ,1999.

    [4]          Mérillou, S., and Ghazanfarpour, D, “A survey of aging and weathering Phenomena in computer graphics. Computers&Graphics,” 32(2), pp.159-174, 2008.

    [5]          Fitzner, B., Heinriches, K., and Kownatzki, R., “Weathering forms at natural            stone  monuments: Classification, mapping and evaluation,”  Internationale eitschrift für   Bauinstandsetzen International journal for restoration of buildings and monuments,  3(2),  pp. 105- 124,1997

    [6]          Schaffer, R. J., “  The weathering of natural building stones,”  Routledge,2016

    [7]          Fitzner, B. and  Heinrichs, K., “Photo atlas of weathering forms on stone         monuments,” Geological Institute, RWTH Aachen University–Working Group Natural    stones and weathering,2004

    [8]          Ema, N.P., Alvarez de Buergo, M.A.  And Rosa Bustamante, R., “Effects of         conservation   interventions on the archaeological Roman site of Merida (Spain). Advance of   research,” Procedia Chemistry, 8, pp. 269-278, 2013.

    [9]          Alakkari, K. Abotaleb, M. Badr, A. Kadi, A. M., A. Mohamad, B. M., E. "Modelling Weather Conditions Using Encoder-Decoder and Attention Based on LSTM Deep Regression Model," Journal of International Journal of Advances in Applied Computational Intelligence, vol. 1, no. 2, pp. 08-29, 2022. DOI: https://doi.org/10.54216/IJAACI.010201

    [10]       Price, C.A. and Doehne, E., “Stone conservation: an overview of current research”, Getty publications, 2011.

    [11]       Bandeira, D., and Walter, M., “Highlights on weathering effects,” The Visual Computer, 26 (6-80), pp.  965-974,2010

    [12]       Mérillou, S., and  Ghazanfarpour, D., “A survey of aging and weathering            phenomena  in computer graphics ,” Computers & Graphics , 32(2), pp. 159 -174, 2008

    [13]       Verstrynge, E., Adriaens, R., Elsen, J. and Van Balen, K., “Multi-scale analysis on   the influence of moisture on the mechanicabehavior of ferruginous sandstone,” Construction and      Building Materials, 54, pp. 78- 90, 2014.

    [14]       Dong, J., Kim, B., Locquet, A., McKeon, P., Declercq, N. and Citrin, D.S.,          “Non-destructive evaluation of forced delamination in glass fiber- reinforced composites   by terahertz and ultrasonic   waves ,” Composites Part B: Engineering ,79 , pp.667-   675,2015.

    [15]       Péronnet, E., Eyma, F., Welemane, H. and Mistou, S.,“Characterization and          comparison of defects detection limits of  ultrasonic non destructive techniques,” Key   Engineering Materials, Vol. 498, pp. 79-88, Trans Tech Publications Ltd,2012.

    [16]       Fais, S., Casula, G., Cuccuru, F., Ligas, P. and Bianchi, M.G. ,“An innovative    methodology   for the non-destructive diagnosis of  architectural elements of ancient    historical buildings,”Scientific reports 8(1), pp. 1-11, 2018 

    [17]       Ghoshal, A., Ayers, J., Gurvich, M., Urban, M. and Bordick, N., “Experimental   investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B: Engineering, 71, pp. 52-62, 2015.

    [18]       Kalpana, P., Anandan, R., Hussien, A.G. et al. Plant disease recognition using residual convolutional enlightened Swin transformer networks. Sci Rep 14, 8660 (2024). https://doi.org/10.1038/s41598-024-56393-8.

    [19]       Nappi, A. and Cote, P., “Nondestructive test methods applicable to historic stone structures,” ENVIRONMENTAL SCIENCES RESEARCH REPORT ES, 20, pp. 151- 166, 1997.

    [20]       Kalpana, P., Anandan, R. (2023). A capsule attention network for plant disease classification. Traitement du Signal, Vol. 40, No. 5, pp. 2051-2062. https://doi.org/10.18280/ts.400523.

    [21]       K., V. "Energy Aware Routing Protocol with Data Fusion and Machine Learning," Journal of International Journal of Wireless and Ad Hoc Communication, vol. 5, no. 1, pp. 22-35, 2022. DOI: https://doi.org/10.54216/IJWAC.050102 

    [22]       Mishra, M., Bhatia, A.S. and Maity, D.,“A comparative study of regression,           neural network and neuro-fuzzy inference system for determining the compressive strength   of brick–  mortar masonry by fusing nondestructive testing data ,”  Engineering with  Computers , pp. 1-15,2019.

    [23]       Pascale, G. and Lolli, A., “Crack assessment in marble sculptures using ultrasonic   measurements: laboratory tests and application on the statue of David by Michelangelo,” Journal of Cultural Heritage 16(6), pp. 813-821, 2015.

    [24]       Martinho, E., Dionísio, A., Almeida, F., Mendes, M. and Grangeia, C., “Integrated   geophysical approach for stone decay diagnosis in cultural heritage,” Construction and Building Materials, 52, pp. 345-352, 2014.

    [25]       Tavukcuoglu, A.Y.Ş.E. and Caner-Saltik, E.N., “Mapping of visual decay forms and   infrared imaging of stone structures for the maintenance and monitoring           studies,” 1999.

    [26]       Salman, M., Mathavan, S., Kamal, K. and Rahman, M.,“ Pavement crack            detection using   the Gabor filter,” 16th international IEEE conference  on intelligent transportation systems (ITSC), IEEE,2013

    [27]       Moropoulou, A., Koui, M., Theoulakis, P., Kourteli, C. and Zezza, F., “Digital Image processing for the environmental impact assessment on architectural surfaces,” Journal of Environmental Chemistry and Technology, 1, pp. 23-32,    1995.

    [28]       Douglas-Jones, R., Hughes, J.J., Jones, S. and Yarrow, T., “Science, value and   material   decay in the conservation of historic environments,” Journal of Cultural Heritage, 21, pp.823-833, 2016.

    [29]       Costamagna, E., Quintero, M.S., Bianchini, N., Mendes, N., Lourenço, P.B., Su, S., Paik,   Y.M. and Min, A., “Advanced non-destructive techniques for the diagnosis of   historic buildings: The Loka-Hteik-Pan temple in Bagan,” Journal of Cultural Heritage, 43,   pp. 108-117, 2020.

    [30]       Fitzner, B., “Damage diagnosis on stone monuments-in situ investigation and laboratory Studies,” Proceedings of the International   Symposium of the Conservation of    the Bangudae Petroglyph. Vol. 7, pp. 29-71, 2002.

    [31]       Sýkora, M., Diamantidis, D., Holický, M., Marková, J. and Rózsás, Á.            “Assessment of compressive strength of historic masonry using non-destructive and destructive techniques,” Construction and Building Materials, 193, pp. 196-210, 2018.

    [32]       Mohan, A. and Poobal, S., “Crack detection using image processing: A critical review and analysis,” Alexandria Engineering Journal, 57(2),
    pp. 787-798, 2018.

    [33]       Fort, R., de Buergo, M.A. and Perez-Monserrat, E.M., “Non-destructive testingfor the assessment of granite decay in heritage structures compared to quarry stone,”  International Journal of Rock Mechanics and Mining  Sciences ,61 , pp.296-305,2013.

    [34]       Brooks, A.J., Hussey, D.S., Yao, H., Haghshenas, A., Yuan, J., LaManna, J.M., Jacobson, D.L., Lowery, C.G., Kardjilov, N., Guo, S. and Khonsari, M.M.,“Neutron interferometry detection of early crack formation caused by bending fatigue in additively manufactured SS316 dogbones,” Materials & Design, 140, pp.420-430,2018.

    [35]       Garnier, C., Pastor, M.L., Eyma, F. and Lorrain, B., “The detection of aeronautical defects in situ on composite structures using Non Destructive Testing,” Composite structures, 93(5), pp. 1328-1336,2011.

    [36]       Shehata, H.M., Mohamed, Y.S., Abdellatif, M. and Awad, T.H., (2018), “Depth estimation of steel cracks using laser and image processing techniques. Alexandria engineering journal,” 57(4), pp.2713-2718.

    [37]       Dare, P., Hanley, H., Fraser, C., Riedel, B. and Niemeier, W., (2002), “An operational   application of automatic feature extraction: the measurement of cracks in concrete   structures,” The Photogrammetric Record 17(99),
    pp.  453-464.

    [38]       Jung, H., Lee, C. and Park, G., (2017) ,“ Fast and Non-invasive Surface Crack Detection of Press Panels Using Image Processing,” Procedia Engineering ,188 , pp. 72-79

    [39]       Qingguo, T., Qijun, L., Ge, B. and Li, Y., (2019), “A methodology framework for retrieval of concrete surface crack′ s image properties based on hybrid model." Optik, 180, pp. 199-214.

    [40]       Aslam, Y., Santhi, N., Ramasamy, N. and Ramar, K.,  (2020) ,“Localization and  segmentation of   metal cracks using deep learning ,” Journal of Ambient   Intelligence and   Humanized Computing,     pp.1-9

    [41]       Talab, A.M.A., Huang, Z., Xi, F. and HaiMing, L., (2016),“Detection crack in image using  Otsu method and multiple filtering in image processing techniques,” Optik – Int. J. Light Electron  127(3), pp.1030-1033.

    [42]       Sankarasrinivasan, S., Balasubramanian, E., Karthik, K., Chandrasekar, U. and Gupta,   R.,(2015),“Health monitoring of civil structures with integrated UAV and image   processing system,” Procedia Computer Science , Procedia Computer Science, 54, pp.508- 515

    [43]       Turakhia, N., Shah, R., & Joshi, M. (2012, December). Automatic crack detection in heritage site images for image inpainting. In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing (pp. 1-8).

    [44]       Wicaksono, Y., Wahono, R.S. and Suhartono, V., (2015),“Color and texture feature   extraction using gabor filter-local  binary patterns for image segmentation with fuzzy  C-means,”  Journal of Intelligent Systems,1(1), pp.15-21.

    [45]       Ojala, T., Pietikainen, M. and Maenpaa, T., (2002),“Multiresolution gray-scale and rotation   invariant texture Classification  with local binary patterns,”  IEEE Trans Pattern Anal  Mach  Intell, 24(7), pp.971-987.

    [46]       Akkoyun, O. and Toprak, Z.F., 2012,“Fuzzy-based quality classification model for natural   building stone blocks,”  Engineering geology, 133, pp.66-75

    [47]       Gonzalez Rafael, C. and Woods Richard, E., (2007),“ Digital Image Processing,”  third  Edition.

    [48]       Al-Jubouri, Q., Al-Azawi, R.J., Al-Taee, M. and Young, I.,(2018),“Efficient individual   identification of zebrafish using Hue/Saturation/Value color model,” The Egyptian   Journal of  Aquatic Research ,  44(4), pp.271-277

    [49]    Jayaraman, E. and Esakkirajan, S., Veerakumar,(2010) “Digital Image Processing,” Tata Mc Graw Hill. Education

    Cite This Article As :
    Perumal, Ramani. , Bharathi, Subbiah. A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Cybersecurity and Information Management, vol. , no. , 2024, pp. 214-238. DOI: https://doi.org/10.54216/JCIM.140215
    Perumal, R. Bharathi, S. (2024). A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Cybersecurity and Information Management, (), 214-238. DOI: https://doi.org/10.54216/JCIM.140215
    Perumal, Ramani. Bharathi, Subbiah. A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Cybersecurity and Information Management , no. (2024): 214-238. DOI: https://doi.org/10.54216/JCIM.140215
    Perumal, R. , Bharathi, S. (2024) . A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Cybersecurity and Information Management , () , 214-238 . DOI: https://doi.org/10.54216/JCIM.140215
    Perumal R. , Bharathi S. [2024]. A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques. Journal of Cybersecurity and Information Management. (): 214-238. DOI: https://doi.org/10.54216/JCIM.140215
    Perumal, R. Bharathi, S. "A Machine Learning Approach for Automated Detection and Classification of Cracks in Ancient Monuments using Image Processing Techniques," Journal of Cybersecurity and Information Management, vol. , no. , pp. 214-238, 2024. DOI: https://doi.org/10.54216/JCIM.140215