Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 13 , Issue 2 , PP: 66-74, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model

Reem Atassi 1 * , Aziz Zikriyoev 2 , Nurbek Turayev 3 , Sagdullayeva Gulnora Botırovna 4

  • 1 Higher Colleges of Technology, United Arab Emirates - (ratassi@hct.ac.ae)
  • 2 Tashkent state University of economics, Uzbekistan - (a.zikriyoev@tsue.uz)
  • 3 Tashkent state University of economics, Uzbekistan - (n.turayev@tsue.uz)
  • 4 Tashkent state University of economics, Uzbekistan - (gulbotir82@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.130205

    Received: July 04, 2023 Revised: November 17, 2023 Accepted: February 18, 2024
    Abstract

    Fraud detection in the financial industry is a challenging area as financial transactions gradually shift to digital platforms. More and more businesses such as the financial industry are operationalizing their services online as the usage of the internet is growing exponentially. Accordingly, financial fraud can increase in number and forms worldwide leading to remarkable financial losses that make financial fraud a main challenge. Threats such as irregular attacks and unauthorized access must be identified through a financial fraud detection system. Over the past few years, data mining and machine learning (ML) approaches have been widely used to address these issues. However, this technique has yet to be enhanced in terms of speed computation, identifying unknown attack patterns, and dealing with big data. This study presents Financial Fraud Detection using the Parameter Tuned Ensemble Machine Learning (FFD-PTEML) method. The FFD-PTEML incorporates multiple advanced components, such as z-score normalization for feature scaling and ensemble classification employing Artificial Neural Networks (ANN), Multilayer Perceptron (MLP), and Radial Basis Function (RBF) networks. The use of z-score normalization ensures uniformity in feature distribution, improving the effectiveness and interpretability of the fraud detection technique. Furthermore, the ensemble classification model combines the strength of different neural network architectures to enhance the detection performance and resilience to complicated fraud patterns. FFD-PTEML demonstrates better performance than the classical technique through extensive experimentation on real-time financial datasets, exhibiting high sensitivity and specificity in fraudulent activity detection.

    Keywords :

    Financial Fraud Detection , Machine Learning , Radial Basis Function , Z-Score Normalization , Fintech Industry

    References

    [1]     Islam, S., Haque, M.M. and Karim, A.N.M.R., 2024. A rule-based machine learning model for financial fraud detection. International Journal of Electrical & Computer Engineering (2088-8708), 14(1).

    [2]     Noviandy, T.R., Idroes, G.M., Maulana, A., Hardi, I., Ringga, E.S. and Idroes, R., 2023. Credit Card Fraud Detection for Contemporary Financial Management Using XGBoost-Driven Machine Learning and Data Augmentation Techniques. Indatu Journal of Management and Accounting, 1(1), pp.29-35.

    [3]     Balbaa, M. E. (2024). Socio-Economic Indicators and their Impact on Sustainable Economic Development: An In-depth Analysis of Egypt. International Journal of Economics and Financial Issues, 14(2), 136–145. https://doi.org/10.32479/ijefi.16016

    [4]     Vashistha, A., Tiwari, A.K., Singh, P., Yadav, P.K. and Pandey, S., 2024. A Robust Framework for Fraud Detection in Banking using ML and NN. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, pp.1-12.

    [5]     Valavan, M. and Rita, S., 2023. Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers. Computer Systems Science & Engineering, 45(1).

    [6]     Nahri Aghdam Ghalejoogh, J., Rezaei, N., Aghdam Mazarae, Y. and Abdi, R., 2024. Detecting financial fraud using machine learning techniques. International Journal of Nonlinear Analysis and Applications, 15(1), pp.199-214.

    [7]     Hajek, P., Abedin, M.Z. and Sivarajah, U., 2023. Fraud detection in mobile payment systems using an XGBoost-based framework. Information Systems Frontiers, 25(5), pp.1985-2003.

    [8]     Saheed, Y.K., Baba, U.A. and Raji, M.A., 2022. Big data analytics for credit card fraud detection using supervised machine learning models. In Big data analytics in the insurance market (pp. 31-56). Emerald Publishing Limited.

    [9]     Olaleye, V.O., Odeniyi, O.A. and Alese, B.K., 2024. Ensemble-based Predictive Model for Financial Fraud Detection. update, 12(42).

    [10]   Abderrahmane Bettayeb, Muhammad Eid Balbaa. (2023). Success Factors in Adopting AI in Human Resource Management in UAE Firms: Neutrosophic Analysis. International Journal of Neutrosophic Science, 21 ( 3 ), 154-165. https://doi.org/10.54216/IJNS.210315

    [11]   Khalid, A.R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J. and Adejoh, J., 2024. Enhancing credit card fraud detection: an ensemble machine learning approach. Big Data and Cognitive Computing, 8(1), p.6.

    [12]   Zhao, Z. and Bai, T., 2022. Financial fraud detection and prediction in listed companies using SMOTE and machine learning algorithms. Entropy, 24(8), p.1157.

    [13]   Ni, L., Li, J., Xu, H., Wang, X. and Zhang, J., 2023. Fraud feature boosting mechanism and spiral oversampling balancing technique for credit card fraud detection. IEEE Transactions on Computational Social Systems.

    [14]   Duan, Y., Zhang, G., Wang, S., Peng, X., Ziqi, W., Mao, J., Wu, H., Jiang, X. and Wang, K., 2024. CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks. arXiv preprint arXiv:2402.14708.

    [15]   Ali, A.A., Khedr, A.M., El-Bannany, M. and Kanakkayil, S., 2023. A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique. Applied Sciences, 13(4), p.2272.

    [16]   Zhao, C., Sun, X., Wu, M. and Kang, L., 2024. Advancing financial fraud detection: Self-attention generative adversarial networks for precise and effective identification. Finance Research Letters, 60, p.104843.

    [17]   Fei, N., Gao, Y., Lu, Z. and Xiang, T., 2021. Z-score normalization, hubness, and few-shot learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 142-151).

    [18]   Li, B. and Khayatnezhad, M., 2024. Modified artificial neural network based on developed snake optimization algorithm for short-term price prediction. Heliyon, p.e26335.

    [19]   Awan, A.A., Majid, A., Riaz, R., Rizvi, S.S. and Kwon, S.J., 2024. A Novel Deep Stacking-based Ensemble Approach for Short-term Traffic Speed Prediction. IEEE Access.

    [20]   Xia, K., Lou, Y., Yuan, Q., Zhu, B., Li, R. and Du, Y., 2024. Optoelectronic Torque Measurement System Based on SAPSO-RBF Algorithm. Sensors, 24(5), p.1576.

    [21]   https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

    [22]   Maashi, M., Alabduallah, B. and Kouki, F., 2023. Sustainable financial fraud detection using garra rufa fish optimization algorithm with ensemble deep learning. Sustainability, 15(18), p.13301.

    Cite This Article As :
    Atassi, Reem. , Zikriyoev, Aziz. , Turayev, Nurbek. , Gulnora, Sagdullayeva. Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model. Journal of Cybersecurity and Information Management, vol. , no. , 2024, pp. 66-74. DOI: https://doi.org/10.54216/JCIM.130205
    Atassi, R. Zikriyoev, A. Turayev, N. Gulnora, S. (2024). Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model. Journal of Cybersecurity and Information Management, (), 66-74. DOI: https://doi.org/10.54216/JCIM.130205
    Atassi, Reem. Zikriyoev, Aziz. Turayev, Nurbek. Gulnora, Sagdullayeva. Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model. Journal of Cybersecurity and Information Management , no. (2024): 66-74. DOI: https://doi.org/10.54216/JCIM.130205
    Atassi, R. , Zikriyoev, A. , Turayev, N. , Gulnora, S. (2024) . Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model. Journal of Cybersecurity and Information Management , () , 66-74 . DOI: https://doi.org/10.54216/JCIM.130205
    Atassi R. , Zikriyoev A. , Turayev N. , Gulnora S. [2024]. Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model. Journal of Cybersecurity and Information Management. (): 66-74. DOI: https://doi.org/10.54216/JCIM.130205
    Atassi, R. Zikriyoev, A. Turayev, N. Gulnora, S. "Boosting Financial Fraud Detection Using Parameter Tuned Ensemble Machine Learning Model," Journal of Cybersecurity and Information Management, vol. , no. , pp. 66-74, 2024. DOI: https://doi.org/10.54216/JCIM.130205