Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 1 , Issue 1 , PP: 30-37, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network

Harith Yas 1 * , Manal M. Nasir 2

  • 1 Faculty of Management, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia - (Harith.albayati@yahoo.com)
  • 2 Gwinnett Technical College, 5150 Sugarloaf Pkwy, Lawrenceville, GA 30043, USA - (mnasir@gwinnetttech.edu)
  • Doi: https://doi.org/10.54216/JCIM.010105

    Abstract

    The Internet of Things (IoT) is an ever-expanding network of interconnected devices that enables various applications, such as smart homes, smart cities, and industrial automation. However, with the proliferation of IoT devices, security risks have increased significantly, making it necessary to develop effective intrusion detection systems (IDS) for IoT networks. In this paper, we propose an efficient IDS for complex IoT environments based on convolutional neural networks (CNNs). Our approach uses IoT traffics as input to our CNN architecture to capture representational knowledge required to discriminate different forms of attacks. Our system achieves high accuracy and low false positive rates, even in the presence of complex and dynamic network traffic patterns. We evaluate the performance of our system using public datasets and compare it with other cutting-edge IDS approaches. Our results show that the proposed system outperforms the other approaches in terms of accuracy and false positive rates. The proposed IDS can enhance the security of IoT networks and protect them against various types of cyber-attacks.

    Keywords :

    IoT , Intrusion Detection , Convolutional Network , Secure IoT Systems

    References

    [1].  Zhou, Y., Cheng, G., Jiang, S., & Dai, M. (2020). Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer networks, 174, 107247.

    [2].  Almseidin,  M.,  Alzubi,  M.,  Kovacs,  S.,  & Alkasassbeh,  M.  (2017,  September).  Evaluation  of  machine learning  algorithms for intrusion detection system. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000277-000282). IEEE.

    [3].  Wang, H., Gu, J., & Wang, S. (2017). An effective intrusion detection framework based on SVM with feature augmentation. Knowledge-Based Systems, 136, 130-139.

    [4].  Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016, May). A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 21-26).

    [5].  Liu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems: A survey. applied sciences, 9(20), 4396.

    [6].  Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep learning approach for intelligent intrusion detection system. Ieee Access, 7, 41525-41550.

    [7].  Sultana, N.,  Chilamkurti, N.,  Peng, W.,  & Alhadad, R.  (2019). Survey on SDN  based netwo rk intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12, 493-501.

    [8].  Alrawashdeh, K., & Purdy, C. (2016, December). Toward an online anomaly intrusion detection system based on  deep  learning.  In 2016  15th  IEEE  international  conference  on  machine  learning  and  applications (ICMLA) (pp. 195-200). IEEE.

    [9].  Aldweesh, A., Derhab, A., & Emam, A. Z. (2020). Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowledge-Based Systems, 189, 105124.

    [10].  Belavagi, M. C., & Muniyal, B. (2016). Performance evaluation of supervised machine learning algorithms for intrusion detection. Procedia Computer Science, 89, 117-123.

    [11].  Khan, F. A., Gumaei, A., Derhab, A., & Hussain,  A. (2019). A novel two-stage deep learning model for efficient network intrusion detection. IEEE Access, 7, 30373-30385.

    [12].  Kang, M. J., & Kang, J. W. (2016). Intrusion detection system using deep neural network for in vehicle network security. PloS one, 11(6), e0155781.

    [13].  Bamakan,  S.  M.  H.,  Wang,  H.,  Yingjie,  T.,  &  Shi,  Y.  (2016). An  effective  intrusion  detection framework  based  on  MCLP/SVM  optimized  by  time-varying  chaos  particle  swarm optimization. Neurocomputing, 199, 90-102.

    [14].  Shone, N., Ngoc, T. N., Phai, V . D., & Shi, Q. (2018). A deep learning approach to network intrusion detection. IEEE transactions on emerging topics in computational intelligence , 2(1), 41-50.

    [15].  Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE access, 6, 33789-33795.

    [16].  Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2017). Shallow and deep networks intrusion detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145.

    [17].  Da Costa, K. A., Papa, J. P., Lisboa, C. O., Munoz, R., & de Albuquerque, V. H. C. (2019). Internet of Things: A survey on machine learning-based intrusion detection approaches. Computer Networks, 151, 147-157.

    [18].  Lin,  W.  C.,  Ke,  S.  W.,  &  Tsai,  C.  F.  (2015).  CANN:  An  intrusion  detection  system  based  on combining cluster centers and nearest neighbors. Knowledge-based systems, 78, 13-21.

    [19].  Abdel-Basset,  M.,  Chang, V.,  Hawash,  H.,  Chakrabortty, R.  K.,  &  Ryan, M.  (2020). Deep-IFS: Intrusion detection approach for industrial internet of things traffic in fog environment.  IEEE Transactions on Industrial Informatics, 17(11), 7704-7715.

    [20].  Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009, July). A detailed analysis of the KDD CUP  99  data  set.  In 2009  IEEE  symposium  on  computational  intelligence  for  security  and  defense applications (pp. 1-6). Ieee. 

    Cite This Article As :
    Yas, Harith. , M., Manal. Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network. Journal of Cybersecurity and Information Management, vol. , no. , 2020, pp. 30-37. DOI: https://doi.org/10.54216/JCIM.010105
    Yas, H. M., M. (2020). Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network. Journal of Cybersecurity and Information Management, (), 30-37. DOI: https://doi.org/10.54216/JCIM.010105
    Yas, Harith. M., Manal. Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network. Journal of Cybersecurity and Information Management , no. (2020): 30-37. DOI: https://doi.org/10.54216/JCIM.010105
    Yas, H. , M., M. (2020) . Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network. Journal of Cybersecurity and Information Management , () , 30-37 . DOI: https://doi.org/10.54216/JCIM.010105
    Yas H. , M. M. [2020]. Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network. Journal of Cybersecurity and Information Management. (): 30-37. DOI: https://doi.org/10.54216/JCIM.010105
    Yas, H. M., M. "Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network," Journal of Cybersecurity and Information Management, vol. , no. , pp. 30-37, 2020. DOI: https://doi.org/10.54216/JCIM.010105