Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 10 , Issue 1 , PP: 43-54, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods

Shereen H. Ali 1 *

  • 1 Department of Communication & Electronics Engineering, Delta Higher Institute for Engineering & Technology, Mansoura, Egypt - (drshereen.2016@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.100103

    Received: April 09, 2022 Accepted: July 20, 2022
    Abstract

    An intrusion detection system is a critical security feature that analyses network traffic in order to avoid serious unauthorized access to network resources. For securing networks against potential breaches, effective intrusion detection is critical. In this paper, a novel Intrusion Detection Framework (IDF) is proposed. The three modules that comprise the suggested IDF are: (i) Data Pre-processing Module (DPM), (ii) Feature Selection Module (FSM), and Classification Module (CM). DPM collects and processes network traffic in order to prepare data for training and testing. The FSM seeks to identify the key elements for recognizing DPM intrusion attempts. An Improved Particle Swarm Optimization is used (IPSO). IPSO is a hybrid method that uses both filter and wrapper approaches to generate accurate and relevant information for the classification step that follows. Primary Selection Phase (PSP) and Completed Selection Phase (CSP) are the two consecutive feature selection phases in IPSO. PSP employs a filtering approaches to quickly identify the most significant features for detecting intrusion threats while eliminating those that are redundant or ineffective. In CSP, the next level of IPSO, this behavior reduces the computing cost. For accurate feature selection, CSP uses Binary Particle Swarm Optimization (Bi-PSO) as a wrapper approach. Based on the most effective features identified by FSM, The CM aims to identify intrusion attempts with the minimal processing time. Therefore, a K-Nearest Neighbor KNN classifier has been deployed. As a result, based on the significant features identified by the IPSO technique, KNN can accurately detect intrusion attacks with the least amount of processing time. The experimental results have shown that the proposed IDF outperforms other recent techniques using UNSW_NB-15 dataset. The accuracy, precision, recall, F1score, and processing time of the experimental outcomes of our findings were assessed. Our results were competitive with an accuracy of 99.8%, precision of 99.94%, recall of 99.85%, F1-score of 99.89%, and excursion time of 59.15s when compared to the findings of the current works.

    Keywords :

    Intrusion Detection System , Machine Learning , Feature Selection , Particle Swarm Optimization

    References

    [1]  Deshmukh,  M.S.,  Alvi,  A.S.  (2022).  Detection  and  Prevention  of  Malicious  Activities  in Vulnerable  Network  Security  Using  Deep  Learning.  In:  Gunjan,  V.K.,  Zurada,  J.M.  (eds) Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart  Cities  and  Applications.  Lecture  Notes  in  Networks  and  Systems,  vol  237.  Springer, Singapore.  https://doi.org/10.1007/978-981-16-6407-6_29.  https://doi.org/10.1007/978-981-166407-6_29. 

    [2]  S. Sadhasivam, P. Valarmathie and K. Dinakaran, "Malicious activities prediction over online  social networking using ensemble model," Intelligent Automation & Soft Computing, vol. 36, no.1, pp. 461–479, 2023. https://doi.org/10.32604/iasc.2023.028650 

    [3]  Mahadik, S., Pawar, P.M. & Muthalagu, R. Efficient Intelligent Intrusion Detection System for  Heterogeneous  Internet  of  Things  (HetIoT).  J  Netw  Syst  Manage  31,  2  (2023). https://doi.org/10.1007/s10922-022-09697-x. 

    [4]  Ashiku, L., Dagli, C. Network Intrusion Detection System using Deep Learning. Procedia Computer Science, 2021, 185, 239-247. 

    [5]  Jadhav, A. D., Pellakuri, V. Highly Accurate and Efficient Two Phase-Intrusion Detection System  (TP-IDS)  using  Distributed  Processing  of  HADOOP  &  Machine  Learning Techniques, 2021. 

    [6]  Ali, S.H., El-Atier, R.A., Abo-Al-Ez, K.M. et al. A Gen-Fuzzy Based Strategy (GFBS) for Web  Service  Classification.  Wireless  Pers  Commun  113,  1917–1953  (2020). https://doi.org/10.1007/s11277-020-07300-7 

    [7]  A. Thakkar, R. Lohiya, Attack classification using feature selection techniques: a comparative study, J. Ambient Intell. Humaniz. Comput. 12 (1) (2021)1249–1266. 

    [8]  Rabbani, M. et al. A review on machine learning approaches for network malicious behavior detection in emerging technologies. Entropy 23(5), 529 (2021). 

    [9]  Ali,  S.  H.,  A  New  Intrusion  Detection  Strategy  Based  on  Combined  Feature  Selection Methodology and Machine Learning Technique, MEJ. Mansoura Engineering Journal, Vol. 46(4),27-35(2021). 

    [10] Rabie,  A.H.,  Ali,  S.H.,  Saleh,  A.I.  et  al.  A  fog  based  load  forecasting  strategy  based  on multiensemble classification for smart grids. J Ambient Intell Human Comput 11,  209–236 (2020). https://doi.org/10.1007/s12652-019-01299-x. 

    [11] Azidine Guezzaz, Said Benkirane, Mourade Azrour, and Shahzada Khurram, “A  Reliable Network Intrusion Detection Approach Using Decision Tree with Enhanced Data Quality”, Security and Communication Networks,2021. https://doi.org/10.1155/2021/1230593. 

    [12] Muhammad  Naveed,  Fahim  Arif,  Syed  Muhammad  Usman,  Aamir  Anwar,  Myriam Hadjouni, Hela Elmannai, Saddam Hussain, Syed Sajid Ullah, and Fazlullah Umar, A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks,  Wireless  Communications  and  Mobile  Computing,  Vol.  2022. https://doi.org/10.1155/2022/2215852. 

    [13] Chongzhen Zhang, Yanli Chen,1 Yang Meng, Fangming Ruan, Runze Chen, Yidan Li, and Yaru Yang, “A Novel Framework Design of Network Intrusion Detection Based on Machine Learning   Techniques”,   Security   and   Communication   Networks Volume   2021. https://doi.org/10.1155/2021/6610675. 

    [14] Kezhou Ren, Yifan Zeng, Zhiqin Cao & Yingchao Zhang, “ID‑RDRL: a deep reinforcement learning‑based  feature  selection  intrusion  detection  model”  Scientific  Reports  (2022) 12:15370. https://doi.org/10.1038/s41598-022-19366-3. 

    [15] I.S. Thaseen and C.A. Kumar, Intrusion detection model using a fusion of chi -square feature selection and multiclass SVM. Journal of King Saud University - Computer and Information Sciences, 2017. vol. 29, pp. 462-472. [16] Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence  Algorithms  for  Feature  Selection:  A  Review.  Appl.  Sci.  2018,  8,  1521. https://doi.org/10.3390/app8091521. 

    [17]  Binsaedan, W., Alramlawi, S., CS-BPSO: Hybrid feature selection based on chi-square and  binary  PSO  algorithm  for  Arabic  email  authorship  analysis,  kowlegde  based  systems, Vol.27(5), 2021. https://doi.org/10.1016/j.knosys.2021.107224. 

    [18]  Saleh,  A.  I.,  El  Desouky,  A.  I.,  Ali,  S.  H.,  Promoting  the  performance  of  vertical recommendation  systems  by  applying  new  classification  techniques,  kowlegde  based  systems, Vol.75, 192-223, 2015. 

    [19]  M. I. Prasetiyowati, N. U. Maulidevi, K. Surendro. (2021, June). Determining threshold value on information gain feature selection to increase speed and prediction accuracy of random forest.  Prasetiyowati  et  al.  J  Big  Data.  8(84).  Available:  https://doi.org/10.1186/s40537 -021-00472-4 

    [20]  S.  Bahassine,  A.  Madani,  M.  Al-Sarem,  M.  Kissi.  (2020).  Feature  selection  using  an improved Chi-square for Arabic text classification. Journal of King Saud University  – Computer and Information Sciences.32, pp. 225-231. Available: https://doi.org/10.1016/j.jksuci.2018.05.010 

    [21]  H. Djellali, N. Zine, N. Azizi. (2016). Two stages feature selection based on filter ranking methods  and  SVMRFE  on  medical  applications.  Modelling  and  Implementation  of  Complex Systems Lecture Notes in Networks and Systems. 1, pp. 281–293. 

    [22]  N.  Moustafa,  J.  Slay,  UNSW-NB15:  a  comprehensive  data  set  for  network  intrusion detection  systems  (UNSW-NB15  network  data  set),  in:  2015  Military  Communications  and Information Systems Conference (MilCIS), IEEE, 2015, pp.1 –6. 

    [23]  Albulayhi, K.; Abu Al-Haija, Q.; Alsuhibany, S.A.; Jillepalli, A.A.; Ashrafuzzaman, M.; Sheldon, F.T. IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method. Appl. Sci. 2022, 12, 5015. https://doi.org/10.3390/app12105015. 

    [24]  Saif S. Kareem,  Reham R. Mostafa, Fatma A. Hashim and Hazem M. El-Bakry, “An Effective  Feature  Selection  Model  Using  Hybrid  Metaheuristic  Algorithms  for  IoT  Intrusion Detection” Sensors 2022, 22, 1396. https://doi.org/10.3390/s22041396. 

    [25]  Faezah Hamad Almasoudy, Wathiq Laftah Al-Yaseen, Ali Kadhum Idrees, “Differential Evolution  Wrapper  Feature  Selection  for  Intrusion  Detection  System”,  Procedia  Computer Science, Volume 167, 2020, Pages 1230-1239. https://doi.org/10.1016/j.procs.2020.03.438. 

    Cite This Article As :
    H., Shereen. A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods. Journal of Cybersecurity and Information Management, vol. , no. , 2022, pp. 43-54. DOI: https://doi.org/10.54216/JCIM.100103
    H., S. (2022). A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods. Journal of Cybersecurity and Information Management, (), 43-54. DOI: https://doi.org/10.54216/JCIM.100103
    H., Shereen. A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods. Journal of Cybersecurity and Information Management , no. (2022): 43-54. DOI: https://doi.org/10.54216/JCIM.100103
    H., S. (2022) . A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods. Journal of Cybersecurity and Information Management , () , 43-54 . DOI: https://doi.org/10.54216/JCIM.100103
    H. S. [2022]. A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods. Journal of Cybersecurity and Information Management. (): 43-54. DOI: https://doi.org/10.54216/JCIM.100103
    H., S. "A Novel Intrusion Detection Framework (IDF) using Machine Learning Methods," Journal of Cybersecurity and Information Management, vol. , no. , pp. 43-54, 2022. DOI: https://doi.org/10.54216/JCIM.100103