
International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

1
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

On Two Novel Generalized Versions of Diffie-Hellman Key Exchange

Algorithm Based on Neutrosophic and Split-Complex Integers and

their Complexity Analysis

Dima Alrwashdeh1,*, Talat Alkhouli2, Ahmed Soiman Rashed Alhawiti3, Ali Allouf4, Hussein Edduweh5,

Abdallah Al-Husban6

1Department of Information Technology, School of Information Technology and System, the University of
Jordan, Aqaba, Jordan

2Applied Science Department, Aqaba University College, Al-Balqa Applied University, Jordan
3Department of General Studies, Technical College of Haql, Tabuk, Kingdom of Saudi Arabia

4Tishreen University, Faculty Of computer engineering and automation, Latakia, Syria
5Department of Mathematics, the University of Texas at Arlington, Arlington, TX 76019-0407, USA

6Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600

Irbid, Jordan

Emails: d.rawashdeh@ju.edu.jo; Talat.khouli@bau.edu.jo; ahmed.a13@tvtc.gov.sa; Ali.allouf@gmail.com;
Husseinsaid.edduweh@mavs.uta.edu; dralhosban@inu.edu.jo

 Abstract

The objective of this paper is to build the Split-Complex version of Diffie-Hellman key Exchange Algorithm,

where we use the mathematical foundations of Split-Complex Number Theory and Integers, such as congruencies,

raising a split-complex integer to a power of split-complex integer to build novel algorithms for key Exchange

depending of famous Diffie-Hellman algorithm. Additionally, we present the proposed version of the Diffie-

Hellman algorithm based on neutrosophic number theory. Also, we analyze the complexity of the novel algorithms

with many examples that explain their applied validity.

Keywords: Split-Complex Cryptography; Split-Complex Diffie-Hellman; Hellman key Exchange Algorithms;

Neutrosophic Diffie-Hellman

1. Introduction

Numerous applications of integer extension fields have recently emerged, particularly in cryptographic algorithms.

Modern methods and proposed algorithms rely on enhancing the complexity of existing security strategies by

utilizing neutrosophic number theory and Split-Complex number theory [1, 2, 5, 7]. In 2023, the Split-Complex

Number Theory was born, where Merkepci and Abobala introduced the mathematical concepts and algebraic

structures for developing a public-key encryption algorithm, specifically RSA, utilizing split-complex number

theory [2].

Since the advent of Shannon's mathematical theory of communication and the subsequent evolution of digital

systems, the paramount concern has been safeguarding the security of information transmitted through

communication channels, protecting it from tampering and eavesdropping. Consequently, the emergence of robust

encryption algorithms became imperative to shield such information. All encryption algorithms, whether

symmetric or asymmetric, rely on keys for generating cipher text. Securely generating and transmitting session

keys has always been a fundamental challenge. In 1976, researchers Diffie and Hellman proposed their renowned

https://doi.org/10.54216/IJNS.250201
mailto:d.rawashdeh@ju.edu.jo
mailto:Talat.khouli@bau.edu.jo
mailto:ahmed.a13@tvtc.gov.sa
mailto:Ali.allouf@gmail.com
mailto:Husseinsaid.edduweh@mavs.uta.edu
mailto:dralhosban@inu.edu.jo

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

2
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

key exchange algorithm [10-14]. In [2] Merkepci and Abobala suggested for the first time the idea of using Split-

Complex number theory in cryptography, and in [6-9] the applications of neutrosophic number theory in

generalizing classical crypto-algorithms were studied in details.

The Diffie-Hellman key exchange is a foundational cryptographic method that allows two parties to securely agree

on a shared secret key, even if they communicate over an insecure channel where others might be listening. This

shared secret key can then be used to encrypt and decrypt messages, providing confidentiality for their

communication. The magic of Diffie-Hellman lies in modular arithmetic and one-way functions:

a) Shared Public Parameters: Two parties, Alice and Bob, begin by agreeing on a large prime number (p) and a

generator (g) within a finite field. These are public values and can be known by anyone.

b) Private Keys: Alice and Bob each choose a secret, random number. Alice's is called a, and Bob's is called b.

These are kept absolutely private.

c) public Key Calculation:

 Alice calculates: 𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝, and sends the result (A) to Bob.

 Bob calculates: 𝐵 = 𝑔𝑏 𝑚𝑜𝑑 𝑝, and sends the result (B) to Alice.

d) Shared Secret Calculation:

 Alice receives B and computes 𝐵𝑎(𝑚𝑜𝑑 𝑝).

 Bob receives A and computes 𝐴𝑏(𝑚𝑜𝑑 𝑝).

Crucially, due to the properties of modular arithmetic, both Alice and Bob will arrive at the same shared secret

value

2. Main discussion

In this section, we will elucidate the rationale behind our selection of positive neutrosophic integers as the

foundation for the novel proposed algorithm. The neutrosophic integer ring (𝐼) finds applications in cryptography

due to the inherent difficulty of splitting neutrosophic positive integers. Neutrosophic integer rings make

cryptographic systems more complex because breaking down these special whole numbers is a tougher problem.

 Remark [11]

a) Let 𝑎 +𝑏𝐼, 𝑐 + 𝑑𝐼 be two neutrosophic integers, then:

𝑎 + 𝑏𝐼 ≤ 𝑐 + 𝑑𝐼 if and only if 𝑎 ≤ c, 𝑎 + 𝑏 ≤ 𝑐 + 𝑑.

b) 𝑎 + 𝑏𝐼 is called positive neutrosophic integer if 𝑎 > 0 and 𝑎 + 𝑏 > 0.

2.1. Proposed neutrosophic algorithm

The Description of neutrosophic Diffie-Hellman Algorithm:

a) Alice and Bob agree on a neutrosophic prime 𝑝 = 𝑝1 + 𝑝2𝐼, i.e. 𝑝1, 𝑝1 + 𝑝2 are classical primes and a base

𝑔 = 𝑔1 + 𝑔2𝐼 > 0, i.e. 𝑔1, 𝑔1 + 𝑔2>0.

b) Alice chose a secret number 𝒂 = 𝒂𝟏 + 𝒂𝟐𝑰 > 𝟎, and sends Bob 𝒈𝒂(𝒎𝒐𝒅 𝒑).

[Remark that 𝒈𝒂(𝒎𝒐𝒅 𝒑) = 𝒈𝒂
𝟏

(𝒎𝒐𝒅 𝒑𝟏) + 𝑰[(𝒈𝟏 + 𝒈𝟐)𝒂𝟏+𝒂𝟐(𝒎𝒐𝒅 𝒑𝟏 + 𝒑𝟐) − 𝒈𝒂
𝟏

(𝒎𝒐𝒅 𝒑𝟏)].

c) Bob choose a secret number

d) Alice computes:

(𝒈𝒃)𝒂(𝒎𝒐𝒅 𝒑) = 𝒈𝒂𝟏𝒃𝟏
𝟏

(𝒎𝒐𝒅 𝒑) + 𝑰[(𝒈𝟏 + 𝒈𝟐)(𝒂𝟏+𝒂𝟐)(𝒃𝟏+𝒃𝟐)(𝒎𝒐𝒅 𝒑𝟏 + 𝒑𝟐) − 𝒈𝒂𝟏𝒃𝟏
𝟏

(𝒎𝒐𝒅𝒑𝟏)].

e) Bob computes:

(𝒈𝒂)𝒃(𝒎𝒐𝒅 𝒑).

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

3
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

 Example

Assume that Alice and Bob have agreed on 𝒑 = 𝟑 + 𝟒𝑰, and 𝒈 = 𝟓 + 𝑰.

Alice chooses the secret neutrosophic number 𝒂 = 𝟐 + 𝟑𝑰. Alice sends Bob(𝟓 + 𝑰)𝟐+𝟑𝑰(𝒎𝒐𝒅 𝒑) =

𝟓𝟐(𝒎𝒐𝒅 𝟑) + 𝑰[𝟔𝟓(𝒎𝒐𝒅 𝟕) − 𝟓𝟐(𝒎𝒐𝒅 𝟑)] = 𝟏 + 𝟓𝑰.

Bob chooses the secret neutrosophic number 𝒃 = 𝟒 − 𝟐𝑰, and sendsAlice(𝟓 + 𝑰)𝟒−𝟐𝑰(𝒎𝒐𝒅 𝒑) = 𝟓𝟒(𝒎𝒐𝒅 𝟑) +
𝑰[𝟔𝟐(𝒎𝒐𝒅 𝟕) − 𝟓𝟒(𝒎𝒐𝒅 𝟑)] = 𝟏.

Alice computes 𝟏𝟐+𝟑𝑰(𝒎𝒐𝒅 𝒑) = 𝟏.

Bob computes (𝟏 + 𝟓𝑰)𝟒−𝟐𝑰(𝒎𝒐𝒅 𝒑) = 𝟏.

Thus, we observe that both parties generated the same secret key value, and therefore the neutrosophic algorithm

works correctly.

 Results

I. As we can see, the neutrosophic Diffie-Hellman algorithm involves more computational steps and

operations compared to the traditional Diffie-Hellman algorithm. While the overall complexity remains

𝑂((𝑙𝑜𝑔 𝑛)^3), the neutrosophic version has a larger constant factor due to the additional modular

exponentiations and subtractions required to handle the neutrosophic parameters.

II. The neutrosophic Diffie-Hellman algorithm is a more complex version of the traditional Diffie-Hellman

algorithm. It offers potential security advantages but comes with a higher computational cost. The choice

between the two algorithms depends on the specific security requirements and computational resources

available.

2.2. Complexity Analysis compared to the classical version

Now, We will compare Diffe- Hellman and neutrosophic Diffe- Hellman by the duration needed to be broken by

using brute-force: (All are measured in seconds in the table bellow):

Table 1: Compareson between Diffe- Hellman and neutrosophic Diffe- Hellman by the duration

Classical

Diffe-

Hellman

Duration Neutrosophic

Diffe- Hellman

Duration

For 12 bit

prime

number p

0.0009770393371582031

For 12 bit

primes numbers

p1 and p2

0.0019540786743164062

For 18 bit

prime

number p

0.001410508155822754 For 18 bit

primes numbers

p1 and p2

0.002821016311645508

For 24 bit

prime

number p

0.009863948822021484 For 24 bit

primes numbers

p1 and p2

0.019727897644042968

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

4
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

We can see that the neutrosophic version of Diffe- Hellman needs more time to be broken, and its complexity is

around. The complexity of the brute force attack is O(p1 * p2), where p1 and p2 are the prime numbers used in

the Neutrosophic Diffie-Hellman key exchange.

The reason for this complexity is that the attack tries all possible combinations of private keys (a1, a2) to find the

correct one that matches the shared secret. The nested loop in the code iterates over the ranges (1, p1) and (1, p2)

for a1 and a2, respectively.

The worst-case scenario occurs when the correct private key is the last combination to be tried, which would

require (p1 - 1) * (p2 - 1) iterations. Therefore, the time complexity of the attack is proportional to the product of

p1 and p2.

2.3. Side Channel attacks and proposed use of the Neutrosophic algorithm

Side-channel and fault attacks are serious threats to the security of cryptographic implementations, particularly in

hardware devices like smartcards and embedded systems. These attacks exploit physical characteristics or

unintended behavior of the hardware during the execution of cryptographic algorithms, allowing an attacker to

potentially recover sensitive information or cryptographic keys. [4]
Side-channel attacks are based on the analysis of physical effects, such as timing information, power consumption,

electromagnetic emanations, or cache behavior, which can leak information about the internal state of the

cryptographic operations. By carefully measuring and analyzing these physical effects, an attacker may be able to

deduce information about the secret keys or intermediate values used in the cryptographic computations.

Fault attacks, on the other hand, involve introducing faults or errors into the cryptographic computations, either by

exposing the device to external factors like glitches, voltage spikes, or electromagnetic pulses, or by exploiting

hardware vulnerabilities. These faults can cause the device to behave in an unintended manner, potentially

revealing sensitive information or allowing the attacker to bypass security mechanisms.

We believe that The Neutrosophic Diffie-Hellman (NDH) key exchange protocol, which is an extension of the

classical Diffie-Hellman protocol, can provide some resistance against side-channel attacks, but it does not

completely eliminate the risk.

- Complex arithmetic: NDH introduces complex number arithmetic into the key exchange process. Instead of

working with regular modular arithmetic, it operates on complex numbers modulo a complex modulus. This

increased complexity can make it more difficult for an attacker to deduce information from side-channel

leakages, as the operations involve both real and imaginary components.

- Key randomization: In NDH, the private keys used by Alice and Bob are complex numbers, with both real

and imaginary parts. This introduces an additional layer of randomness compared to the classical Diffie-

Hellman protocol, where the private keys are real numbers. The increased randomness can help obfuscate the

side-channel information, making it harder for an attacker to interpret the leakages.

- Increased computational complexity: The complex arithmetic operations in NDH are generally more

computationally intensive than the regular modular arithmetic used in classical Diffie-Hellman. This increased

computational complexity can make it more challenging for an attacker to correlate the side-channel leakages

with specific operations or intermediate values.

Figure 1. Diffe-Hellman duration for different Bit lengths

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

5
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

2.4. The flow chart of the Neutrosophic DH:

 Start

2.5. Split-Complex Version of DH Algorithm

We recall some basic concepts in Split-Complex Number Theory and Integers.

 Definition. [2]

Let 𝑥 = 𝑝 + 𝑞𝑗 and 𝑦 = 𝑐 + 𝑑𝑗 be two split-complex integers, where:

𝑝 and 𝑐 are real numbers.

𝑞 and 𝑑 are coefficients of the split-complex unit 𝑗, which satisfies 𝑗2 = 1.

We say 𝑥 divides 𝑦 (denoted 𝑥 | 𝑦), if there exists another split-complex integer 𝑧 = 𝑚 + 𝑛𝑗 such that:

𝑦 is equal to the product of 𝑥 and 𝑧: 𝑦 = 𝑥 × 𝑧.

Alice and Bob agree on a

neutrosophic prime 𝑝 = 𝑝1 + 𝑝2𝐼

and a base 𝑔 = 𝑔1 + 𝑔2𝐼 > 0

Alice chose a secret number 𝑎 =

𝑎1 + 𝑎2𝐼 > 0

Bob choose a secret number 𝑏 =

𝑏1 + 𝑏2𝐼 > 0

Alice sends Bob 𝑔𝑎(𝑚𝑜𝑑 𝑝).

Bob sends Alice 𝑔𝑏(𝑚𝑜𝑑 𝑝).

Alice computes:

 (𝑔𝑏)𝑎(𝑚𝑜𝑑 𝑝)

Bob computes:

(𝑔𝑎)𝑏(𝑚𝑜𝑑 𝑝).

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

6
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

 Definition. [2]

Let 𝑥 = 𝑝 + 𝑞𝑗, 𝑦 = 𝑐 + 𝑑𝑗, = 𝑚 + 𝑛𝑗 be three split-complex integers, then:

I. 𝑥 ≡ 𝑦(𝑚𝑜𝑑 𝑧) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑧|𝑥 − 𝑦.
II. 𝑥 ≤ 𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑝 − 𝑞 ≤ 𝑐 − 𝑑 𝑎𝑛𝑑 𝑝 + 𝑞 ≤ 𝑐 + 𝑑.

 Remark

We will define the specific rules for calculating this operation, allowing us to work with complex expressions

involving split-complex numbers and exponents.

(𝑎 + 𝑏𝑗)(𝑐+𝑑𝑗) =
1

2
[(𝑎 − 𝑏)𝑐−𝑑 + (𝑐 + 𝑑)𝑐+𝑑] +

1

2
𝑗[(𝑎 + 𝑏)𝑐+𝑑 − (𝑎 − 𝑏)𝑐−𝑑].

 Remark

The Diffie-Hellman (DH) key exchange algorithm is a cornerstone of modern cryptography, playing a crucial role

in secure communication over insecure channels. Its importance stems from several key factors such as: Enabling

Secure Key Exchange, Foundation for Secure Protocols, and Forward Secrecy.

However, the classical DH algorithm also has limitations, prompting the need for enhancements: Vulnerability to

Man-in-the-Middle Attacks, Computational Complexity, and Quantum Computing Threat.

3. The proposed Diffie-Hellman based on Split-Complex Number Theory

The Description of Split-Complex Diffie-Hellman Algorithm:

a) Alice and Bob agree on a Split-Complex prime 𝑝 = 𝑝1 + 𝑝2𝑗, (it is preferred to take 𝑝1 − 𝑝2, 𝑝1 + 𝑝2, as

large prime numbers and a base 𝑔 = 𝑔1 + 𝑔2𝑗.

b) Alice chooses a secret number 𝑎 = 𝑎1 + 𝑎2𝑗, and sends Bob 𝑔𝑎(𝑚𝑜𝑑 𝑝). Remark that:

𝑔𝑎 =
1

2
[(𝑔1 − 𝑔2)𝑎1−𝑎2 + (𝑔1 + 𝑔2)𝑎1+𝑎2] +

1

2
𝑗[(𝑔1 + 𝑔2)𝑎1+𝑎2 − (𝑔1 − 𝑔2)𝑎1−𝑎2].

c) Bob chooses a secret number 𝒃 = 𝒃𝟏 + 𝒃𝟐𝒋 > 𝟎, and sends Alice 𝒈𝒃(𝒎𝒐𝒅 𝒑).

d) Alice computes:

(𝒈𝒃)𝒂(𝒎𝒐𝒅 𝒑)

e) Bob computes:

(𝒈𝒂)𝒃(𝒎𝒐𝒅 𝒑).

 Example

We Assume that Alice and Bob have agreed on 𝒑 = 𝟓 + 𝟑𝒋, and 𝒈 = 𝟓 + 𝒋. Alice choose the secret Split-Complex

number 𝒂 = 𝟑 + 𝟐𝒋. And Bob Bob choose the secret neutrosophic number 𝒃 = 𝟒 − 𝟐𝒋.

Alice sends Bob: (𝟓 + 𝒋)𝟑+𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) =
𝟏

𝟐
[(𝟓 − 𝟏)𝟑−𝟐 + (𝟓 + 𝟏)𝟑+𝟐] +

𝟏

𝟐
𝒋[(𝟓 + 𝟏)𝟑+𝟐 − (𝟓 − 𝟏)𝟑−𝟐 =

(𝟑𝟖𝟗𝟎 + 𝟑𝟖𝟖𝟔𝒋)(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) =
𝟏

𝟐
[(𝟑𝟖𝟗𝟎 + 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) + (𝟑𝟖𝟗𝟎 − 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) +

𝟏

𝟐
𝒋[(𝟑𝟖𝟗𝟎 +

𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) − (𝟑𝟖𝟗𝟎 − 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟐)] = 𝟎.

Bob sends Alice: (𝟓 + 𝒋)𝟒−𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟐 + 𝟐𝒋.

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

7
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

Alice computes: 𝟎𝟑+𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟎.

Bob computes: (𝟐 + 𝟐𝒋)𝟒−𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟎.

Thus, we observe that both parties generated the same secret key value, and therefore the neutrosophic algorithm

worked correctly.

 Results

The Split-Complex Diffie-Hellman algorithm introduces additional computational complexity compared to the

traditional Diffie-Hellman algorithm, while potentially offering an additional layer of security due to the use of

split-complex numbers. The trade-off between security and computational overhead should be carefully considered

before adopting this approach in practical applications.

 Remark

The codes which have been used:

import random

import time

Function to check if a number is prime

def is_prime(n):

 if n <= 1:

 return False

 if n <= 3:

 return True

 if n % 2 == 0 or n % 3 == 0:

 return False

 i = 5

 while i * i <= n:

 if n % i == 0 or n % (i + 2) == 0:

 return False

 i += 6

 return True

Function to compute modular exponentiation (base^exp mod mod)

def mod_exp(base, exp, mod):

 result = 1

 base = base % mod

 while exp > 0:

 if exp % 2 == 1:

 result = (result * base) % mod

 exp = exp // 2

 base = (base * base) % mod

 return result

Function to perform complex modular exponentiation (base^exp mod mod)

def complex_mod_exp(base, exp, mod):

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

8
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

 real = mod_exp(base.real, exp.real, mod.real)

 imag = mod_exp(base.imag, exp.imag, mod.imag)

 return complex(real, imag)

Neutrosophic Diffie-Hellman key exchange

def neutrosophic_diffie_hellman(p1, p2, g1, g2, a1, a2, b1, b2):

 # Check if p1 and p2 are prime

 if not is_prime(p1) or not is_prime(p2):

 raise ValueError("p1 and p2 must be prime numbers.")

 # Compute p = p1 + p2i

 p = complex(p1, p2)

 # Check if g1 and g2 are positive

 if g1 <= 0 or g2 <= 0:

 raise ValueError("g1 and g2 must be positive numbers.")

 # Compute g = g1 + g2i

 g = complex(g1, g2)

 # Compute g^a (mod p)

 ga_mod_p = complex_mod_exp(g, complex(a1, a2), p)

 # Compute g^b (mod p)

 gb_mod_p = complex_mod_exp(g, complex(b1, b2), p)

 # Compute (g^b)^a (mod p)

 gab_mod_p = complex_mod_exp(gb_mod_p, complex(a1, a2), p)

 # Compute (g^a)^b (mod p)

 gba_mod_p = complex_mod_exp(ga_mod_p, complex(b1, b2), p)

 return gab_mod_p, gba_mod_p

Example usage

p1 = 163 # Classical prime p1

p2 = 59 # Classical prime p2

g1 = 2 # Base g1

g2 = 61 # Base g2

Generate 200 key pairs and test brute force attack

for _ in range(100):

 # Generate random private keys

 a1 = random.randint(1, p1 - 1) # Secret number a1

 a2 = random.randint(1, p2 - 1) # Secret number a2

 b1 = random.randint(1, p1 - 1) # Secret number b1

 b2 = random.randint(1, p2 - 1) # Secret number b2

 # Calculate the shared secret

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

9
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

 alice_result, bob_result = neutrosophic_diffie_hellman(p1, p2, g1, g2, a1, a2, b1, b2)

 # Perform brute force attack

 start_time = time.time()

 found_key = False

 for i in range(1, p1):

 for j in range(1, p2):

 # Calculate the shared secret using the brute forced private key

 test_alice_result, test_bob_result = neutrosophic_diffie_hellman(p1, p2, g1, g2, i, j, b1, b2)

 # Check if the calculated shared secret matches the original shared secret

 if test_alice_result == alice_result and test_bob_result == bob_result:

 found_key = True

 end_time = time.time()

 time_taken = end_time - start_time

 execution_times.append(time_taken)

 print("Brute force attack successful!")

 print("Private key found: (", i, ",", j, ")")

 print("Time taken:", time_taken, "seconds")

 break

 if found_key:

 break

 else:

 end_time = time.time()

 time_taken = end_time - start_time

 execution_times.append(time_taken)

 print("Brute force attack failed.")

 print("Time taken:", time_taken, "seconds")

import matplotlib.pyplot as plt

bits = [12, 18, 24]

p_times = [0.0009770393371582031, 0.001410508155822754, 0.009863948822021484]

p1_p2_times = [0.0019540786743164062, 0.002821016311645508, 0.019727897644042968]

plt.plot(bits, p_times, marker='o', label='Classical Diffe-Hellman Duration')

plt.plot(bits, p1_p2_times, marker='x', label='Neutrosophic Diffe-Hellman Duration')

plt.xlabel('Bit Length')

plt.ylabel('Duration')

plt.title('Diffe-Hellman Durations for Different Bit Lengths')

plt.legend()

plt.show()

https://doi.org/10.54216/IJNS.250201

International Journal of Neutrosophic Sciences (IJNS) Vol. 25, No. 02, PP. 01-10, 2025

10
DOI: https://doi.org/10.54216/IJNS.250201
Received: January 29, 2024 Revised: April 28, 2024 Accepted: July 20, 2024

4. Conclusion

In this paper, we have introduced for the first time the neutrosophic and Split-Complex versions of the Diffie-

Hellman algorithm. As we demonstrated in both enhanced algorithms, the complexity increased due to the

additional computational operations, thereby providing more secure secret keys compared to the traditional Diffie-

Hellman algorithm. This was achieved by utilizing extensions of integer numbers in cryptography. We propose

utilizing the enhanced algorithm to secure online file transmission by employing the improved secret key as an

encryption key for an algorithm such as AES-128.

References

[1] Merkepci, M., and Abobala, M., “Security Model for Encrypting Uncertain Rational Data Units Based

on Refined Neutrosophic Integers Fusion and El Gamal Algorithm ", Fusion: Practice and Applications,

2023.

[2] Merkepci, M., and Abobala, M., “On Some Novel Results about Split-Complex Numbers, the

Diagonalization Problem and Applications to Public Key Asymmetric Cryptography", Journal of

Mathematics, Hindawi, 2023.

[3] S. A. Aparna J R, "Image Watermarking using Diffie Hellman Key Exchange," in International

Conference on Information and Communication Technologies, Kochi, India, 2015.

[4] https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und

Empfehlungen/ Kryptografie/ KI-in-der-Kryptografie/ki-in-der-kryptografie_node.html. Last visted:

6/17/2024.

[5] Abobala, M., and Allouf, A., " On A Novel Security Scheme for The Encryption and Decryption Of

2×2 Fuzzy Matrices with Rational Entries Based on The Algebra of Neutrosophic Integers and El-

Gamal Crypto-System", Neutrosophic Sets and Systems, vol.54, 2023.

[6] Merkepci, M., Abobala, M., and Allouf, A., " The Applications of Fusion Neutrosophic Number Theory

in Public Key Cryptography and the Improvement of RSA Algorithm ", Fusion: Practice and

Applications, 2023.

[7] Abobala, M., (2021). Partial Foundation of Neutrosophic Number Theory. Neutrosophic Sets and

Systems, Vol. 39.

[8] Hasan Sankari, Mohammad Abobala, “On a Generalization of RSA Crypto-system By Using 2-Cyclic

Refined Integers", Journal of Cybersecurity and Information Management, Vol 12, 2023.

[9] Mohammad Abobala, Hasan Sankari, and Mohamed Bisher Zeina, " On Novel Security Systems Based

on the 2-Cyclic Refined Integers and the Foundations of 2-Cyclic Refined Number Theory", Journal of

Fuzzy Extension and Applications, 2024.

[10] Alhasan, Y. A., Alfahal, A. M. A., Abdulfatah, R. A., Ali, R., & Aljibawi, M. (2023). On a novel

security algorithm for the encryption of 3x3 fuzzy matrices with rational entries based on the symbolic

2- plithogenic integers and El-Gamal algorithm. International journal of neutrosophic science, 21(1),

88–95. DOI:10.54216/IJNS.210108

[11] Shihadeh, A., Matarneh, K. A. M., Hatamleh, R., Hijazeen, R. B. Y., Al-Qadri, M. O., & Al-Husban,

A. (2024). An Example of Two-Fold Fuzzy Algebras Based On Neutrosophic Real

Numbers. Neutrosophic Sets and Systems, 67, 169-178.

[12] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Mowafaq Omar Al-Qadri,

Abdallah Al-Husban. (2024). On The Two-Fold Fuzzy n-Refined Neutrosophic Rings For 2 ≤3.

Neutrosophic Sets and Systems, 68, 8-25.

[13] Al-Husban, A., Salleh, A. R., & Hassan, N. (2015). Complex fuzzy normal subgroup. In AIP

Conference Proceedings (Vol. 1678, No. 1). AIP Publishing.

[14] Abdallah Al-Husban & Abdul Razak Salleh 2015. Complex fuzzy ring. Proceedings of 2nd

International Conference on Computing, Mathematics and Statistics. Pages. 241-245. Publisher: IEEE

2015.

[15] Roy, S., Pan, Z., Abu Qarnayn, N., Alajmi, M., Alatawi, A., Alghamdi, A., ... & Rana, J. (2024). A

robust optimal control framework for controlling aberrant RTK signaling pathways in esophageal

cancer. Journal of Mathematical Biology, 88(2), 14.

[16] Roy, S., Ambartsoumian, G., & Shipman, B. (2023). OPTIMAL CONTROL FRAMEWORKS FOR

MODELING DYNAMICS AND ANDROGEN DEPRIVATION THERAPIES IN PROSTATE

CANCER (Doctoral dissertation).

https://doi.org/10.54216/IJNS.250201
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und%20Empfehlungen/%20Kryptografie/
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und%20Empfehlungen/%20Kryptografie/
http://fs.unm.edu/nss8/index.php/111/article/view/4501

