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 Abstract 

The objective of this paper is to build the Split-Complex version of Diffie-Hellman key Exchange Algorithm, 

where we use the mathematical foundations of Split-Complex Number Theory and Integers, such as congruencies, 

raising a split-complex integer to a power of split-complex integer to build novel algorithms for key Exchange 

depending of famous Diffie-Hellman algorithm. Additionally, we present the proposed version of the Diffie-

Hellman algorithm based on neutrosophic number theory. Also, we analyze the complexity of the novel algorithms 

with many examples that explain their applied validity. 

Keywords: Split-Complex Cryptography; Split-Complex Diffie-Hellman; Hellman key Exchange Algorithms; 

Neutrosophic Diffie-Hellman 

1. Introduction

Numerous applications of integer extension fields have recently emerged, particularly in cryptographic algorithms. 

Modern methods and proposed algorithms rely on enhancing the complexity of existing security strategies by 

utilizing neutrosophic number theory and Split-Complex number theory [1, 2, 5, 7]. In 2023, the Split-Complex 

Number Theory was born, where Merkepci and Abobala introduced the mathematical concepts and algebraic 

structures for developing a public-key encryption algorithm, specifically RSA, utilizing split-complex number 

theory [2]. 

Since the advent of Shannon's mathematical theory of communication and the subsequent evolution of digital 

systems, the paramount concern has been safeguarding the security of information transmitted through 

communication channels, protecting it from tampering and eavesdropping. Consequently, the emergence of robust 

encryption algorithms became imperative to shield such information. All encryption algorithms, whether 

symmetric or asymmetric, rely on keys for generating cipher text. Securely generating and transmitting session 

keys has always been a fundamental challenge. In 1976, researchers Diffie and Hellman proposed their renowned 
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key exchange algorithm [10-14]. In [2] Merkepci and Abobala suggested for the first time the idea of using Split-

Complex number theory in cryptography, and in [6-9] the applications of neutrosophic number theory in 

generalizing classical crypto-algorithms were studied in details. 

The Diffie-Hellman key exchange is a foundational cryptographic method that allows two parties to securely agree 

on a shared secret key, even if they communicate over an insecure channel where others might be listening. This 

shared secret key can then be used to encrypt and decrypt messages, providing confidentiality for their 

communication. The magic of Diffie-Hellman lies in modular arithmetic and one-way functions: 

a) Shared Public Parameters:  Two parties, Alice and Bob, begin by agreeing on a large prime number (p) and a 

generator (g) within a finite field. These are public values and can be known by anyone. 

b) Private Keys: Alice and Bob each choose a secret, random number. Alice's is called a, and Bob's is called b.  

These are kept absolutely private. 

c) public Key Calculation: 

 Alice calculates: 𝐴 =  𝑔𝑎 𝑚𝑜𝑑 𝑝, and sends the result (A) to Bob. 

 Bob calculates: 𝐵 =  𝑔𝑏  𝑚𝑜𝑑 𝑝, and sends the result (B) to Alice. 

d) Shared Secret Calculation: 

 Alice receives B and computes 𝐵𝑎(𝑚𝑜𝑑 𝑝). 

 Bob receives A and computes  𝐴𝑏(𝑚𝑜𝑑 𝑝). 

Crucially, due to the properties of modular arithmetic, both Alice and Bob will arrive at the same shared secret 

value 

2. Main discussion 

In this section, we will elucidate the rationale behind our selection of positive neutrosophic integers as the 

foundation for the novel proposed algorithm. The neutrosophic integer ring (𝐼) finds applications in cryptography 

due to the inherent difficulty of splitting neutrosophic positive integers. Neutrosophic integer rings make 

cryptographic systems more complex because breaking down these special whole numbers is a tougher problem. 

 Remark [11] 

a) Let 𝑎 +𝑏𝐼, 𝑐 + 𝑑𝐼 be two neutrosophic integers, then: 

𝑎 + 𝑏𝐼 ≤ 𝑐 + 𝑑𝐼 if and only if 𝑎 ≤ c, 𝑎 + 𝑏 ≤ 𝑐 + 𝑑. 

b) 𝑎 + 𝑏𝐼 is called positive neutrosophic integer if 𝑎 > 0 and 𝑎 + 𝑏 > 0. 

2.1. Proposed neutrosophic algorithm 

The Description of neutrosophic Diffie-Hellman Algorithm: 

a) Alice and Bob agree on a neutrosophic prime 𝑝 = 𝑝1 + 𝑝2𝐼, i.e. 𝑝1, 𝑝1 + 𝑝2 are classical primes and a base 

𝑔 = 𝑔1 + 𝑔2𝐼 > 0, i.e. 𝑔1, 𝑔1 + 𝑔2>0. 

b) Alice chose a secret number 𝒂 = 𝒂𝟏 + 𝒂𝟐𝑰 > 𝟎, and sends Bob 𝒈𝒂(𝒎𝒐𝒅 𝒑). 

[Remark that 𝒈𝒂(𝒎𝒐𝒅 𝒑) = 𝒈𝒂
𝟏

(𝒎𝒐𝒅 𝒑𝟏) + 𝑰[(𝒈𝟏 + 𝒈𝟐)𝒂𝟏+𝒂𝟐(𝒎𝒐𝒅 𝒑𝟏 + 𝒑𝟐) − 𝒈𝒂
𝟏

(𝒎𝒐𝒅 𝒑𝟏)]. 

c) Bob choose a secret number  

d) Alice computes: 

(𝒈𝒃)𝒂(𝒎𝒐𝒅 𝒑) = 𝒈𝒂𝟏𝒃𝟏
𝟏

(𝒎𝒐𝒅 𝒑) + 𝑰[(𝒈𝟏 + 𝒈𝟐)(𝒂𝟏+𝒂𝟐)(𝒃𝟏+𝒃𝟐)(𝒎𝒐𝒅 𝒑𝟏 + 𝒑𝟐) − 𝒈𝒂𝟏𝒃𝟏
𝟏

(𝒎𝒐𝒅𝒑𝟏)]. 

e) Bob computes: 

(𝒈𝒂)𝒃(𝒎𝒐𝒅 𝒑). 
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 Example 

Assume that Alice and Bob have agreed on 𝒑 = 𝟑 + 𝟒𝑰, and 𝒈 = 𝟓 + 𝑰.  

Alice chooses the secret neutrosophic number 𝒂 = 𝟐 + 𝟑𝑰. Alice sends Bob(𝟓 + 𝑰)𝟐+𝟑𝑰(𝒎𝒐𝒅 𝒑) =

𝟓𝟐(𝒎𝒐𝒅 𝟑) + 𝑰[𝟔𝟓(𝒎𝒐𝒅 𝟕) − 𝟓𝟐(𝒎𝒐𝒅 𝟑)] = 𝟏 + 𝟓𝑰. 

Bob chooses the secret neutrosophic number 𝒃 = 𝟒 − 𝟐𝑰, and sendsAlice(𝟓 + 𝑰)𝟒−𝟐𝑰(𝒎𝒐𝒅 𝒑) = 𝟓𝟒(𝒎𝒐𝒅 𝟑) +
𝑰[𝟔𝟐(𝒎𝒐𝒅 𝟕) − 𝟓𝟒(𝒎𝒐𝒅 𝟑)] = 𝟏. 

Alice computes 𝟏𝟐+𝟑𝑰(𝒎𝒐𝒅 𝒑) = 𝟏. 

Bob computes (𝟏 + 𝟓𝑰)𝟒−𝟐𝑰(𝒎𝒐𝒅 𝒑) = 𝟏. 

Thus, we observe that both parties generated the same secret key value, and therefore the neutrosophic algorithm 

works correctly. 

 Results 

I. As we can see, the neutrosophic Diffie-Hellman algorithm involves more computational steps and 

operations compared to the traditional Diffie-Hellman algorithm. While the overall complexity remains 

𝑂((𝑙𝑜𝑔 𝑛)^3), the neutrosophic version has a larger constant factor due to the additional modular 

exponentiations and subtractions required to handle the neutrosophic parameters. 

II. The neutrosophic Diffie-Hellman algorithm is a more complex version of the traditional Diffie-Hellman 

algorithm. It offers potential security advantages but comes with a higher computational cost. The choice 

between the two algorithms depends on the specific security requirements and computational resources 

available. 

2.2. Complexity Analysis compared to the classical version 

Now, We will compare Diffe- Hellman and neutrosophic Diffe- Hellman by the duration needed to be broken by 

using brute-force: (All are measured in seconds in the table bellow): 

Table 1: Compareson  between Diffe- Hellman and neutrosophic Diffe- Hellman by the duration 

Classical 

Diffe- 

Hellman 

Duration Neutrosophic 

Diffe- Hellman 

Duration 

For 12 bit 

prime 

number p 

0.0009770393371582031 

 

For 12 bit 

primes numbers 

p1 and p2 

0.0019540786743164062 

For 18 bit 

prime 

number p 

0.001410508155822754 For 18 bit 

primes numbers 

p1 and p2 

0.002821016311645508 

For 24 bit 

prime 

number p 

0.009863948822021484 For 24 bit 

primes numbers 

p1 and p2 

0.019727897644042968 
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We can see that the neutrosophic version of Diffe- Hellman needs more time to be broken, and its complexity is 

around. The complexity of the brute force attack is O(p1 * p2), where p1 and p2 are the prime numbers used in 

the Neutrosophic Diffie-Hellman key exchange. 

The reason for this complexity is that the attack tries all possible combinations of private keys (a1, a2) to find the 

correct one that matches the shared secret. The nested loop in the code iterates over the ranges (1, p1) and (1, p2) 

for a1 and a2, respectively. 

The worst-case scenario occurs when the correct private key is the last combination to be tried, which would 

require (p1 - 1) * (p2 - 1) iterations. Therefore, the time complexity of the attack is proportional to the product of 

p1 and p2. 

2.3. Side Channel attacks and proposed use of the Neutrosophic algorithm  

Side-channel and fault attacks are serious threats to the security of cryptographic implementations, particularly in 

hardware devices like smartcards and embedded systems. These attacks exploit physical characteristics or 

unintended behavior of the hardware during the execution of cryptographic algorithms, allowing an attacker to 

potentially recover sensitive information or cryptographic keys. [4] 
Side-channel attacks are based on the analysis of physical effects, such as timing information, power consumption, 

electromagnetic emanations, or cache behavior, which can leak information about the internal state of the 

cryptographic operations. By carefully measuring and analyzing these physical effects, an attacker may be able to 

deduce information about the secret keys or intermediate values used in the cryptographic computations. 

Fault attacks, on the other hand, involve introducing faults or errors into the cryptographic computations, either by 

exposing the device to external factors like glitches, voltage spikes, or electromagnetic pulses, or by exploiting 

hardware vulnerabilities. These faults can cause the device to behave in an unintended manner, potentially 

revealing sensitive information or allowing the attacker to bypass security mechanisms. 

We believe that The Neutrosophic Diffie-Hellman (NDH) key exchange protocol, which is an extension of the 

classical Diffie-Hellman protocol, can provide some resistance against side-channel attacks, but it does not 

completely eliminate the risk. 

- Complex arithmetic: NDH introduces complex number arithmetic into the key exchange process. Instead of 

working with regular modular arithmetic, it operates on complex numbers modulo a complex modulus. This 

increased complexity can make it more difficult for an attacker to deduce information from side-channel 

leakages, as the operations involve both real and imaginary components. 

- Key randomization: In NDH, the private keys used by Alice and Bob are complex numbers, with both real 

and imaginary parts. This introduces an additional layer of randomness compared to the classical Diffie-

Hellman protocol, where the private keys are real numbers. The increased randomness can help obfuscate the 

side-channel information, making it harder for an attacker to interpret the leakages. 

- Increased computational complexity: The complex arithmetic operations in NDH are generally more 

computationally intensive than the regular modular arithmetic used in classical Diffie-Hellman. This increased 

computational complexity can make it more challenging for an attacker to correlate the side-channel leakages 

with specific operations or intermediate values. 

 

 

 

 

 

 

 

 

Figure 1. Diffe-Hellman duration for different Bit lengths 
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2.4. The flow chart of the Neutrosophic DH: 

  Start 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Split-Complex Version of DH Algorithm 

We recall some basic concepts in Split-Complex Number Theory and Integers. 

 Definition. [2] 

Let 𝑥 = 𝑝 + 𝑞𝑗 and 𝑦 = 𝑐 + 𝑑𝑗 be two split-complex integers, where: 

𝑝 and 𝑐 are real numbers. 

𝑞 and 𝑑 are coefficients of the split-complex unit 𝑗, which satisfies 𝑗2 =  1. 

We say 𝑥 divides 𝑦 (denoted 𝑥 | 𝑦), if there exists another split-complex integer 𝑧 =  𝑚 +  𝑛𝑗 such that: 

𝑦 is equal to the product of 𝑥 and 𝑧: 𝑦 = 𝑥 × 𝑧. 

Alice and Bob agree on a 

neutrosophic prime 𝑝 = 𝑝1 + 𝑝2𝐼 

and a base 𝑔 = 𝑔1 + 𝑔2𝐼 > 0 

Alice chose a secret number 𝑎 =

𝑎1 + 𝑎2𝐼 > 0  

Bob choose a secret number 𝑏 =

𝑏1 + 𝑏2𝐼 > 0 

Alice sends Bob 𝑔𝑎(𝑚𝑜𝑑 𝑝). 

Bob sends Alice 𝑔𝑏(𝑚𝑜𝑑 𝑝). 

Alice computes: 

         (𝑔𝑏)𝑎(𝑚𝑜𝑑 𝑝) 

Bob computes: 

(𝑔𝑎)𝑏(𝑚𝑜𝑑 𝑝). 
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 Definition. [2] 

Let 𝑥 = 𝑝 + 𝑞𝑗, 𝑦 = 𝑐 + 𝑑𝑗, =  𝑚 +  𝑛𝑗 be three split-complex integers, then: 

I. 𝑥 ≡  𝑦(𝑚𝑜𝑑 𝑧) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑧|𝑥 −  𝑦. 
II. 𝑥 ≤  𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑝 −  𝑞 ≤  𝑐 −  𝑑 𝑎𝑛𝑑 𝑝 +  𝑞 ≤  𝑐 +  𝑑. 

 

 Remark 

We will define the specific rules for calculating this operation, allowing us to work with complex expressions 

involving split-complex numbers and exponents. 

(𝑎 + 𝑏𝑗)(𝑐+𝑑𝑗) =
1

2
[(𝑎 − 𝑏)𝑐−𝑑 + (𝑐 + 𝑑)𝑐+𝑑] +

1

2
𝑗[(𝑎 + 𝑏)𝑐+𝑑 − (𝑎 − 𝑏)𝑐−𝑑]. 

 Remark 

The Diffie-Hellman (DH) key exchange algorithm is a cornerstone of modern cryptography, playing a crucial role 

in secure communication over insecure channels. Its importance stems from several key factors such as: Enabling 

Secure Key Exchange, Foundation for Secure Protocols, and Forward Secrecy. 

However, the classical DH algorithm also has limitations, prompting the need for enhancements: Vulnerability to 

Man-in-the-Middle Attacks, Computational Complexity, and Quantum Computing Threat. 

3. The proposed Diffie-Hellman based on Split-Complex Number Theory 

The Description of Split-Complex Diffie-Hellman Algorithm: 

a) Alice and Bob agree on a Split-Complex prime 𝑝 = 𝑝1 + 𝑝2𝑗, (it is preferred to take 𝑝1  −  𝑝2, 𝑝1 +  𝑝2, as 

large prime numbers and a base 𝑔 = 𝑔1 + 𝑔2𝑗. 

b) Alice chooses a secret number 𝑎 = 𝑎1 + 𝑎2𝑗, and sends Bob 𝑔𝑎(𝑚𝑜𝑑 𝑝). Remark that: 

𝑔𝑎 =  
1

2
[(𝑔1 − 𝑔2 )𝑎1−𝑎2 + (𝑔1 +  𝑔2)𝑎1+𝑎2] +

1

2
𝑗[(𝑔1 + 𝑔2 )𝑎1+𝑎2 − (𝑔1 − 𝑔2)𝑎1−𝑎2]. 

c) Bob chooses a secret number 𝒃 = 𝒃𝟏 + 𝒃𝟐𝒋 > 𝟎, and sends Alice 𝒈𝒃(𝒎𝒐𝒅 𝒑). 

d) Alice computes: 

(𝒈𝒃)𝒂(𝒎𝒐𝒅 𝒑) 

e) Bob computes: 

(𝒈𝒂)𝒃(𝒎𝒐𝒅 𝒑). 

 Example 

We Assume that Alice and Bob have agreed on 𝒑 = 𝟓 + 𝟑𝒋, and 𝒈 = 𝟓 + 𝒋. Alice choose the secret Split-Complex 

number 𝒂 = 𝟑 + 𝟐𝒋.  And Bob Bob choose the secret neutrosophic number 𝒃 = 𝟒 − 𝟐𝒋. 

Alice sends Bob: (𝟓 + 𝒋)𝟑+𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) =
𝟏

𝟐
[(𝟓 − 𝟏)𝟑−𝟐 + (𝟓 + 𝟏)𝟑+𝟐] +

𝟏

𝟐
𝒋[(𝟓 + 𝟏)𝟑+𝟐 − (𝟓 − 𝟏)𝟑−𝟐 = 

(𝟑𝟖𝟗𝟎 + 𝟑𝟖𝟖𝟔𝒋 )(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) =  
𝟏

𝟐
[(𝟑𝟖𝟗𝟎 + 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) + (𝟑𝟖𝟗𝟎 − 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) +

𝟏

𝟐
𝒋[(𝟑𝟖𝟗𝟎 +

𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟖) − (𝟑𝟖𝟗𝟎 − 𝟑𝟖𝟖𝟔)(𝒎𝒐𝒅 𝟐)] = 𝟎. 

Bob sends Alice: (𝟓 + 𝒋)𝟒−𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟐 + 𝟐𝒋. 
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Alice computes: 𝟎𝟑+𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟎. 

Bob computes: (𝟐 + 𝟐𝒋)𝟒−𝟐𝒋(𝒎𝒐𝒅 𝟓 + 𝟑𝒋) = 𝟎. 

Thus, we observe that both parties generated the same secret key value, and therefore the neutrosophic algorithm 

worked correctly. 

 Results 

The Split-Complex Diffie-Hellman algorithm introduces additional computational complexity compared to the 

traditional Diffie-Hellman algorithm, while potentially offering an additional layer of security due to the use of 

split-complex numbers. The trade-off between security and computational overhead should be carefully considered 

before adopting this approach in practical applications. 

 Remark 

The codes which have been used: 

import random 

import time 

# Function to check if a number is prime 

def is_prime(n): 

    if n <= 1: 

        return False 

    if n <= 3: 

        return True 

    if n % 2 == 0 or n % 3 == 0: 

        return False 

    i = 5 

    while i * i <= n: 

        if n % i == 0 or n % (i + 2) == 0: 

            return False 

        i += 6 

    return True 

# Function to compute modular exponentiation (base^exp mod mod) 

def mod_exp(base, exp, mod): 

    result = 1 

    base = base % mod 

    while exp > 0: 

        if exp % 2 == 1: 

            result = (result * base) % mod 

        exp = exp // 2 

        base = (base * base) % mod 

    return result 

# Function to perform complex modular exponentiation (base^exp mod mod) 

def complex_mod_exp(base, exp, mod): 

https://doi.org/10.54216/IJNS.250201
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    real = mod_exp(base.real, exp.real, mod.real) 

    imag = mod_exp(base.imag, exp.imag, mod.imag) 

    return complex(real, imag) 

# Neutrosophic Diffie-Hellman key exchange 

def neutrosophic_diffie_hellman(p1, p2, g1, g2, a1, a2, b1, b2): 

    # Check if p1 and p2 are prime 

    if not is_prime(p1) or not is_prime(p2): 

        raise ValueError("p1 and p2 must be prime numbers.") 

    # Compute p = p1 + p2i 

    p = complex(p1, p2) 

    # Check if g1 and g2 are positive 

    if g1 <= 0 or g2 <= 0: 

        raise ValueError("g1 and g2 must be positive numbers.") 

    # Compute g = g1 + g2i 

    g = complex(g1, g2) 

    # Compute g^a (mod p) 

    ga_mod_p = complex_mod_exp(g, complex(a1, a2), p) 

    # Compute g^b (mod p) 

    gb_mod_p = complex_mod_exp(g, complex(b1, b2), p) 

    # Compute (g^b)^a (mod p) 

    gab_mod_p = complex_mod_exp(gb_mod_p, complex(a1, a2), p) 

    # Compute (g^a)^b (mod p) 

    gba_mod_p = complex_mod_exp(ga_mod_p, complex(b1, b2), p) 

    return gab_mod_p, gba_mod_p 

# Example usage 

p1 = 163  # Classical prime p1 

p2 = 59  # Classical prime p2 

g1 = 2   # Base g1 

g2 = 61   # Base g2 

# Generate 200 key pairs and test brute force attack 

for _ in range(100): 

    # Generate random private keys 

    a1 = random.randint(1, p1 - 1)  # Secret number a1 

    a2 = random.randint(1, p2 - 1)  # Secret number a2 

    b1 = random.randint(1, p1 - 1)  # Secret number b1 

    b2 = random.randint(1, p2 - 1)  # Secret number b2 

    # Calculate the shared secret 
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    alice_result, bob_result = neutrosophic_diffie_hellman(p1, p2, g1, g2, a1, a2, b1, b2) 

    # Perform brute force attack 

    start_time = time.time() 

    found_key = False 

    for i in range(1, p1): 

        for j in range(1, p2): 

            # Calculate the shared secret using the brute forced private key 

            test_alice_result, test_bob_result = neutrosophic_diffie_hellman(p1, p2, g1, g2, i, j, b1, b2) 

            # Check if the calculated shared secret matches the original shared secret 

            if test_alice_result == alice_result and test_bob_result == bob_result: 

                found_key = True 

                end_time = time.time() 

                time_taken = end_time - start_time 

                execution_times.append(time_taken) 

                print("Brute force attack successful!") 

                print("Private key found: (", i, ",", j, ")") 

                print("Time taken:", time_taken, "seconds") 

                break 

        if found_key: 

            break 

    else: 

        end_time = time.time() 

        time_taken = end_time - start_time 

        execution_times.append(time_taken) 

        print("Brute force attack failed.") 

        print("Time taken:", time_taken, "seconds") 

import matplotlib.pyplot as plt 

bits = [12, 18, 24] 

p_times = [0.0009770393371582031, 0.001410508155822754, 0.009863948822021484] 

p1_p2_times = [0.0019540786743164062, 0.002821016311645508, 0.019727897644042968] 

plt.plot(bits, p_times, marker='o', label='Classical Diffe-Hellman Duration') 

plt.plot(bits, p1_p2_times, marker='x', label='Neutrosophic Diffe-Hellman Duration') 

plt.xlabel('Bit Length') 

plt.ylabel('Duration') 

plt.title('Diffe-Hellman Durations for Different Bit Lengths') 

plt.legend() 

plt.show() 
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4. Conclusion 

In this paper, we have introduced for the first time the neutrosophic and Split-Complex versions of the Diffie-

Hellman algorithm. As we demonstrated in both enhanced algorithms, the complexity increased due to the 

additional computational operations, thereby providing more secure secret keys compared to the traditional Diffie-

Hellman algorithm. This was achieved by utilizing extensions of integer numbers in cryptography. We propose 

utilizing the enhanced algorithm to secure online file transmission by employing the improved secret key as an 

encryption key for an algorithm such as AES-128. 
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