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Abstract

The notions of neutrosophic N -subalgebras and neutrosophic N -ideals of Hilbert algebras are introduced,
and several properties are investigated. Conditions for neutrosophic N -structures to be neutrosophic N -
subalgebras and neutrosophic N -ideals of Hilbert algebras are provided. The Cartesian product of neutro-
sophic N -structures is also supplied. Finally, we also find the property of the homomorphic pre-image of
neutrosophic N -subalgebras and neutrosophic N -ideals.
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1 Introduction

Zadeh19 introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generaliza-
tion of fuzzy sets, Atanassov1 introduced the degree of nonmembership/falsehood (f) in 1986 and defined
the intuitionistic fuzzy set. Smarandache proposed the term “neutrosophic” because “neutrosophic” etymo-
logically comes from “neutrosophic” [French neuter, Latin neuter, neutral, and Greek sophia, skill/wisdom]
which means knowledge of neutral thought, and this third/neutral represents the main distinction between
“fuzzy/intuitionistic” logic/set and “neutrosophic” logic/set, that is, the included middle component, that is,
the neutral/indeterminate/unknown part (besides the truth/membership and falsehood/non-membership com-
ponents that both appear in fuzzy logic/set). Smarandache introduced the degree of indeterminacy/neutrality
(i) as an independent component in 1995 (published in 1998) and defined the neutrosophic set on three com-
ponents (t, i, f) = (truth, indeterminacy, falsehood). The concept of the neutrosophic set developed by Smaran-
dache16, 17 is a more general platform that extends the concepts of the classic set and fuzzy set, intuitionistic
fuzzy set, and interval-valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various parts (refer
to the site http://fs.gallup.unm.edu/neutrosophy.htm). Diego5 proved that Hilbert algebras form a locally finite
variety. Hilbert algebras were treated by Busneag2, 3 and Jun9 and some of their filters forming deductive sys-
tems were recognized. Dudek6 considered the fuzzification of subalgebras and deductive systems in Hilbert
algebras.

The negative structure of sets is constantly being defined and studied. Jun et al.10 introduced a new function,
called a negative-valued function, and constructed N -structures in 2009. Jun et al.11, 18 considered neutro-
sophic N -structures applied to BCK/BCI-algebras and neutrosophic commutative N -ideals in BCK-algebras
in 2017. Jun et al.12 studied neutrosophic positive implicative N -ideals in BCK-algebras in 2018. Rangsuk et
al.15 introduced the notions of (special) neutrosophic N -UP-subalgebras, (special) neutrosophic N -near UP-
filters, (special) neutrosophic N -UP-filters, (special) neutrosophic N -UP-ideals, and (special) neutrosophic
N -strong UP-ideals of UP-algebras in 2019.
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In this paper, the notions of neutrosophic N -subalgebras and neutrosophic N -ideals of Hilbert algebras are
introduced, and several properties are investigated. Conditions for neutrosophic N -structures to be neutro-
sophic N -subalgebras and neutrosophic N -ideals of Hilbert algebras are provided. The Cartesian product of
neutrosophic N -structures is also supplied. Finally, we also find the property of the homomorphic pre-image
of neutrosophic N -subalgebras and neutrosophic N -ideals.

2 Preliminaries

Before we begin our study, we will give the definition of a Hilbert algebra.

Definition 2.1. 5 A Hilbert algebra is a triplet with the formula X = (X, ·, 1), where X is a nonempty set, ·
is a binary operation, and 1 is a fixed member of X that is true according to the axioms stated below:

(1) (∀x, y ∈ X)(x · (y · x) = 1),

(2) (∀x, y, z ∈ X)((x · (y · z)) · ((x · y) · (x · z)) = 1),

(3) (∀x, y ∈ X)(x · y = 1, y · x = 1 ⇒ x = y).

In,6 the following conclusion was established.

Lemma 2.2. Let X = (X, ·, 1) be a Hilbert algebra. Then

(1) (∀x ∈ X)(x · x = 1),

(2) (∀x ∈ X)(1 · x = x),

(3) (∀x ∈ X)(x · 1 = 1),

(4) (∀x, y, z ∈ X)(x · (y · z) = y · (x · z)),

(5) (∀x, y, z ∈ X)((x · z) · ((z · y) · (x · y)) = 1).

In a Hilbert algebra X = (X, ·, 1), the binary relation ≤ is defined by

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 1),

which is a partial order on X with 1 as the largest element.

Definition 2.3. 20 A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called a subalgebra of X if
x · y ∈ D for all x, y ∈ D.

Definition 2.4. 4, 7 A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called an ideal of X if the
following conditions hold:

(1) 1 ∈ D,

(2) (∀x, y ∈ X)(y ∈ D ⇒ x · y ∈ D),

(3) (∀x, y1, y2 ∈ X)(y1, y2 ∈ D ⇒ (y1 · (y2 · x)) · x ∈ D).

A fuzzy set19 in a nonempty set X is defined to be a function µ : X → [0, 1], where [0, 1] is the unit closed
interval of real numbers.

Definition 2.5. 14 A fuzzy set µ in a Hilbert algebra X = (X, ·, 1) is said to be a fuzzy subalgebra of X if the
following condition holds:

(∀x, y ∈ X)(µ(x · y) ≥ min{µ(x), µ(y)}).
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Definition 2.6. 8 A fuzzy set µ in a Hilbert algebra X = (X, ·, 1) is said to be a fuzzy ideal of X if the
following conditions hold:

(1) (∀x ∈ X)(µ(1) ≥ µ(x)),

(2) (∀x, y ∈ X)(µ(x · y) ≥ µ(y)),

(3) (∀x, y1, y2 ∈ X)(µ((y1 · (y2 · x)) · x) ≥ min{µ(y1), µ(y2)}).

Definition 2.7. 1 A neutrosophic set in a nonempty set H is defined to be a structure

A := {(x, TA(x), IA(x), FA(x)) | x ∈ H}, (1)

where TA : H → [0, 1] is a truth membership function, IA : H → [0, 1] is an indeterminate membership
function, and FA : H → [0, 1] is a false membership function. The neutrosophic set in (1) is simply denoted
by A = (X,TA, IA, FA).

Definition 2.8. 13 We denote the family of all functions from a nonempty set X to the closed interval [−1, 0]
of the real line by F(X, [−1, 0]). An element of F(X, [−1, 0]) is called a negative-valued function from X to
[−1, 0] (briefly, N -function on X). An ordered pair of a nonempty set X and an N -function on X is called
an N -fuzzy structure. A neutrosophic N -structure XN over a nonempty universe of discourse X is defined
to be the structure (X,TN , IN , FN ), where TN , IN , and FN are N -functions on X which are called the
negative truth membership function, the negative indeterminacy membership function and the negative falsity
membership function on X , respectively.

For the sake of simplicity, we will use the notation XN instead of the neutrosophic N -structure (X,TN , IN , FN ).10

Definition 2.9. 15 Let XN be a neutrosophic N -structure over a nonempty set X . The neutrosophic N -
structure XN = (X,TN , IN , FN ) defined by

(∀x ∈ X)

 TN (x) = −1− TN (x)
IN (x) = −1− IN (x)
FN (x) = −1− FN (x)

 (2)

is called the complement of XN in X .

3 Neutrosophic N -fuzzy subalgebras and ideals of Hilbert algebras

In what follows, let X denote a Hilbert algebra (X, ·, 1) unless otherwise specified.

Definition 3.1. A neutrosophic N -structure XN over X is called a neutrosophic N -fuzzy subalgebra of X if

(∀x, y ∈ X)

 TN (x · y) ≤ max{TN (x), TN (y)}
IN (x · y) ≥ min{IN (x), IN (y)}
FN (x · y) ≤ max{FN (x), FN (y)}

 . (3)

Example 3.2. Let X = {1, x, y, z, 0} with the following Cayley table:

· 1 x y z 0
1 1 x y z 0
x 1 1 y z 0
y 1 x 1 z z
z 1 1 y 1 y
0 1 1 1 1 1

Then X is a Hilbert algebra. We define a neutrosophic N -structure XN over X as follows:

X 1 x y z 0
TN −1 −0.8 −0.8 −0.7 −0.4
IN −0.3 −0.5 −0.7 −0.3 −0.6
FN −1 −0.8 −0.8 −0.7 −0.4

Then XN is a neutrosophic N -subalgebra of X .
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Proposition 3.3. Every neutrosophic N -subalgebra of X satisfies

(∀x ∈ X)

 TN (1) ≤ TN (x)
IN (1) ≥ IN (x)
FN (1) ≤ FN (x)

 . (4)

Proof. For any x ∈ X , we have

TN (1) = TN (x · x) ≤ max{TN (x), TN (x)} = TN (x),

IN (1) = IN (x · x) ≥ min{IN (x), IN (x)} = IN (x),

FN (1) = FN (x · x) ≤ max{FN (x), FN (x)} = FN (x).

Definition 3.4. A neutrosophic N -structure XN over X is called a neutrosophic N -ideal of X if it satisfies
(4) and

(∀x, y ∈ X)

 TN (x · y) ≤ TN (y)
IN (x · y) ≥ IN (y)
FN (x · y) ≤ FN (y)

 , (5)

(∀x, y1, y2 ∈ X)

 TN ((y1 · (y2 · x)) · x) ≤ max{TN (y1), TN (y2)}
IN ((y1 · (y2 · x)) · x) ≥ min{IN (y1), IN (y2)}
FN ((y1 · (y2 · x)) · x) ≤ max{FN (y1), FN (y2)}

 . (6)

Example 3.5. From Example 3.2, XN is a neutrosophic N -ideal of X .

Proposition 3.6. If XN is a neutrosophic N -ideal of X , then

(∀x, y ∈ X)

 TN ((y · x) · x) ≤ TN (y)
IN ((y · x) · x) ≥ IN (y)
FN ((y · x) · x) ≤ FN (y)

 . (7)

Proof. Let x, y ∈ X . By (6), we have

TN ((y · x) · x) = TN ((1 · (y · x)) · x) ≤ max{TN (1), TN (y)} = TN (y),

IN ((y · x) · x) = IN ((1 · (y · x)) · x) ≥ min{IN (1), IN (y)} = IN (y),

FN ((y · x) · x) = FN ((1 · (y · x)) · x) ≤ max{FN (1), FN (y)} = FN (y).

Lemma 3.7. If XN is a neutrosophic N -ideal of X , then

(∀x, y ∈ X)

 x ≤ y ⇒

 TN (x) ≥ TN (y)
IN (x) ≤ IN (y)
FN (x) ≥ FN (y)

 . (8)

Proof. Let x, y ∈ X be such that x ≤ y. Then x · y = 1 and so

TN (y) = TN (1 · y)
= TN (((x · y) · (x · y)) · y)
≤ max{TN (x · y), TN (x)}
≤ max{TN (1), TN (x)}
= TN (x),

IN (y) = IN (1 · y)
= IN (((x · y) · (x · y)) · y)
≥ min{IN (x · y), IN (x)}
≥ min{IN (1), IN (x)}
= IN (x),
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FN (y) = FN (1 · y)
= FN (((x · y) · (x · y)) · y)
≤ max{FN (x · y), FN (x)}
≤ max{FN (1), FN (x)}
= FN (x).

Theorem 3.8. Every neutrosophic N -ideal of X is a neutrosophic N -subalgebra of X .

Proof. Let XN be a neutrosophic N -ideal of X . By (5), we have

TN (x · y) ≤ TN (y) ≤ max{TN (x), TN (y)},

IN (x · y) ≥ IN (y) ≥ min{IN (x), IN (y)},

FN (x · y) ≤ FN (y) ≤ max{FN (x), FN (y)}.

Hence, XN is a neutrosophic N -subalgebra of X .

Proposition 3.9. If {Xi
N | i ∈ ∆} is a family of neutrosophic N -subalgebras of X , then

∧
i∈∆

Xi
N is a

neutrosophic N -subalgebra of X .

Proof. Let {Xi
N | i ∈ ∆} be a family of neutrosophic N -subalgebras of X . Let x, y ∈ X . Then

(
∧
i∈∆

TN i)(x · y) = sup
i∈∆

{TN i(x · y)}

≤ sup
i∈∆

{max{TN i(x), TN i(y)}}

≤ max{sup
i∈∆

{TN i(x)}, sup
i∈∆

{TN i(y)}}

= max{(
∧
i∈∆

TN i)(x), (
∧
i∈∆

TN i)(y)},

(
∧
i∈∆

IN i)(x · y) = inf
i∈∆

{IN i(x · y)}

≥ inf
i∈∆

{min{IN i(x), IN i(y)}}
≥ min{ inf

i∈∆
{IN i(x)}, inf

i∈∆
{IN i(y)}}

= min{(
∧
i∈∆

IN i)(x), (
∧
i∈∆

IN i)(y)},

(
∧
i∈∆

FN i)(x · y) = sup
i∈∆

{FN i(x · y)}

≤ sup
i∈∆

{max{FN i(x), FN i(y)}}

≤ max{sup
i∈∆

{FN i(x)}, sup
i∈∆

{FN i(y)}}

= max{(
∧
i∈∆

FN i)(x), (
∧
i∈∆

FN i)(y)}.

Hence,
∧
i∈∆

Xi
N is a neutrosophic N -subalgebra of X .

The following proposition can be proved similarly to Proposition 3.9.

Proposition 3.10. If {Xi
N | i ∈ ∆} is a family of neutrosophic N -ideals of X , then

∧
i∈∆

Xi
N is a neutrosophic

N -ideal of X .

Definition 3.11. Let XN be a neutrosophic N -structure over a nonempty set X . The neutrosophic N -
structures ⊕XN ,⊗XN , and ⊙XN are defined as ⊕XN = (X,TN , TN , FN ), ⊗XN = (X, IN , IN , FN ),
and ⊙XN = (X, IN , IN , IN ).

Theorem 3.12. If XN is a neutrosophic N -subalgebra of X , then ⊕XN ,⊗XN , and ⊙XN are neutrosophic
N -subalgebras of X .
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Proof. Let x, y ∈ X . Then

TN (x · y) = −1− TN (x · y)
≥ −1−max{TN (x), TN (y)}
= min{−1− TN (x),−1− TN (y)}
= min{TN (x), TN (y)},

IN (x · y) = −1− IN (x · y)
≤ −1−min{IN (x), IN (y)}
= max{−1− IN (x),−1− IN (y)}
= max{IN (x), IN (y)}.

Hence, ⊕XN ,⊗XN , and ⊙XN are neutrosophic N -subalgebras of X .

The following theorem can be proved similarly to Theorem 3.12.

Theorem 3.13. If XN is a neutrosophic N -ideal of X , then ⊕XN ,⊗XN , and ⊙ are neutrosophic N -ideals
of X .

Theorem 3.14. If XN is a neutrosophic N -subalgebra of X , then the sets XTN = {x ∈ X | TN (x) =
TN (1)}, XIN = {x ∈ X | IN (x) = IN (1)}, and XFN = {x ∈ X | FN (x) = FN (1)} are subalgebras of
X .

Proof. Let x, y ∈ XTN . Then TN (x) = TN (1) = TN (y) and TN (x · y) ≤ max{TN (x), TN (y)} = TN (1).
By (4), we have TN (x · y) = TN (1); hence x · y ∈ XTN . Let x, y ∈ XIN . Then IN (x) = IN (1) = IN (y)
and IN (x · y) ≥ min{IN (x), IN (y)} = IN (1). By (4), we have IN (x · y) = IN (1); hence x · y ∈ XIN . Let
x, y ∈ XFN . Then FN (x) = FN (1) = TN (y) and FN (x · y) ≤ max{FN (x), FN (y)} = FN (1). By (4),
we have FN (x · y) = FN (1); hence x · y ∈ XFN . Hence, the sets XTN , XIN , and XFN are subalgebras of
X .

The following proposition can be proved similarly to Theorem 3.14.

Theorem 3.15. If XN is a neutrosophic N -ideal of X , then the sets XTN , XIN , and XFN are ideals of X .

For any numbers a+, a−, b+, b−, c+, c− ∈ [−1, 0] such that a+ > a−, b+ > b−, c+ > c− and a nonempty
subset G of X , define a neutrosophic N -structure

XG

[
a−, b+, c−

a+, b−, c+

]
=

(
X,TN

G

[
a−

a+

]
, IN

G

[
b+

b−

]
, FN

G

[
c−

c+

])
over X , where

TN
G

[
a−

a+

]
(x) =

{
a− if x ∈ G
a+ otherwise,

IN
G

[
b+

b−

]
(x) =

{
b+ if x ∈ G
b− otherwise,

FN
G

[
c−

c+

]
(x) =

{
c− if x ∈ G
c+ otherwise.

Lemma 3.16. If the constant 1 of X is in a nonempty subset G of X , then the neutrosophic N -structure

XG

[
a−, b+, c−

a+, b−, c+

]
over X satisfies (4).

Proof. If 1 ∈ G, then TN
G

[
a−

a+

]
(1) = a−, ING

[
b+

b−

]
(1) = b+, and FN

G

[
c−

c+

]
(1) = c−. Thus,

(∀x ∈ X)


TN

G

[
a−

a+

]
(1) = a− ≤ TN

G

[
a−

a+

]
(x)

IN
G

[
b+

b−

]
(1) = b+ ≥ IN

G

[
b+

b−

]
(x)

FN
G

[
c−

c+

]
(1) = c− ≤ FN

G

[
c−

c+

]
(x)

 . (9)
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Hence, XG

[
a−, b+, c−

a+, b−, c+

]
satisfies (4).

Lemma 3.17. If the neutrosophic N -structure XG

[
a−, b+, c−

a+, b−, c+

]
over X satisfies (4), then the constant 1

of X is in a nonempty subset G of X .

Proof. Assume that the neutrosophic N -structure XG

[
a−, b+, c−

a+, b−, c+

]
in X satisfies (4). Then TN

G

[
a−

a+

]
(1) ≤

TN
G

[
a−

a+

]
(x) for all x ∈ X . Since G is nonempty, there exists g ∈ G. Thus, TN

G

[
a−

a+

]
(g) = a− and so

TN
G

[
a−

a+

]
(1) ≥ a− = TN

G

[
a−

a+

]
(g) ≥ TN

G

[
a−

a+

]
(1), that is, TN

G

[
a−

a+

]
(1) = a−. Hence, 1 ∈ G.

Theorem 3.18. The neutrosophic N -structure XG

[
a−, b+, c−

a+, b−, c+

]
in X is a neutrosophic N -subalgebra of

X if and only if a nonempty subset G of X is a subalgebra of X .

Proof. Assume that XG

[
a−, b+, c−

a+, b−, c+

]
is a neutrosophic N -subalgebra of X . Let x, y ∈ G. Then

TN
G

[
a−

a+

]
(x) = a− = TN

G

[
a−

a+

]
(y). Thus,

TN
G

[
a−

a+

]
(x · y) ≤ max

{
TN

G

[
a−

a+

]
(x), TN

G

[
a−

a+

]
(y)

}
= max{a−, a−}
= a−

≤ TN
G

[
a−

a+

]
(x · y)

and so TN
G

[
a−

a+

]
(x · y) = a−. Thus, x · y ∈ G. Hence, G is a subalgebra of X .

Conversely, assume that G is a subalgebra of X . Let x, y ∈ X .

Case 1: Let x, y ∈ G. Then

TN
G

[
a−

a+

]
(x) = a− = TN

G

[
a−

a+

]
(y),

IN
G

[
b+

b−

]
(x) = b+ = IN

G

[
b+

b−

]
(y),

FN
G

[
c−

c+

]
(x) = c− = FN

G

[
c−

c+

]
(y).

Since G is a subalgebra of X , we have x · y ∈ G and so TN
G

[
a−

a+

]
(x · y) = a−, IN

G

[
b+

b−

]
(x · y) = b+, and

FN
G

[
c−

c+

]
(x · y) = c−. Thus,

TN
G

[
a−

a+

]
(x · y) = a− ≤ a− = max{a−, a−} = max

{
TN

G

[
a−

a+

]
(x), TN

G

[
a−

a+

]
(y)

}
,

IN
G

[
b−

b+

]
(x · y) = b+ ≥ b+ = min{b+, b+} = min

{
IN

G

[
b−

b+

]
(x), IN

G

[
b−

b+

]
(y)

}
,

FN
G

[
c−

c+

]
(x · y) = c− ≤ c− = max

{
c−, c−

}
= max

{
FN

G

[
c−

c+

]
(x), FN

G

[
c−

c+

]
(y)

}
.
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Case 2: Let x /∈ G or y /∈ G. Then

TN
G

[
a−

a+

]
(x) = a+ or TN

G

[
a−

a+

]
(y) = a+,

IN
G

[
b+

b−

]
(x) = b− or ING

[
b+

b−

]
(y) = b−,

FN
G

[
c−

c+

]
(x) = c+ or FN

G

[
c−

c+

]
(y) = c+.

Thus,

max

{
TN

G

[
a−

a+

]
(x), TN

G

[
a−

a+

]
(y)

}
= a+,

min

{
IN

G

[
a+

a−

]
(x), IN

G

[
b+

b−

]
(y)

}
= b−,

max

{
FN

G

[
c−

c+

]
(x), FN

G

[
c−

c+

]
(y)

}
= c+.

Therefore,

TN
G

[
a−

a+

]
(x · y) ≤ a+ = max

{
TN

G

[
a−

a+

]
(x), TN

G

[
a−

a+

]
(y)

}
IN

G

[
b+

b−

]
(x · y) ≥ b− = min

{
IN

G

[
b+

b−

]
(x), IN

G

[
b+

b−

]
(y)

}
FN

G

[
c−

c+

]
(x · y) ≤ c+ = max

{
FN

G

[
c−

c+

]
(x), FN

G

[
c−

c+

]
(y)

}
.

Hence, XG

[
a−, b+, c−

a+, b−, c+

]
is a neutrosophic N -subalgebra of X .

The following theorem can be proved similarly to Theorem 3.18.

Theorem 3.19. The neutrosophic N -structure XG

[
a−, b+, c−

a+, b−, c+

]
over X is a neutrosophic N -ideal of X

if and only if a nonempty subset G of X is an ideal of X .

Definition 3.20. Let f be an N -function on a nonempty set X . For any t ∈ [−1, 0], the sets U(f : t) = {x ∈
X | f(x) ≥ t} is called an upper t-level subset of f , L(f : t) = {x ∈ X | f(x) ≤ t} is called a lower t-level
subset of f , and E(f : t) = {x ∈ X | f(x) = t} is called an equal t-level subset of f .

Theorem 3.21. A neutrosophic N -structure XN over X is a neutrosophic N -subalgebra of X if and only if
for all a, b, c ∈ [−1, 0], the sets L(TN : a), U(IN : b), and L(FN : c) are either empty or subalgebras of X .

Proof. Assume that XN is a neutrosophic N -subalgebra of X . Let a, b, c ∈ [−1, 0] be such that L(TN :
a), U(IN : b), and L(FN : c) are nonempty. Let x, y ∈ L(TN : a). Then TN (x) ≤ a and TN (y) ≤ a, so
a is an upper bound of {TN (x), TN (y)}. By (3), we have TN (x · y) ≤ max{TN (x), TN (y)} ≤ a. Thus,
x · y ∈ L(TN : a). Let x, y ∈ U(IN : b). Then IN (x) ≥ b and IN (y) ≥ b, so b is a lower bound of
{IN (x), IN (y)}. By (3), we have IN (x · y) ≥ min{IN (x), IN (y)} ≥ b. Thus, x · y ∈ U(IN : b). Let
x, y ∈ L(FN : c). Then FN (x) ≤ c and FN (y) ≤ c, so c is an upper bound of {FN (x), FN (y)}. By (3), we
have FN (x · y) ≤ max{FN (x), FN (y)} ≤ c. Thus, x · y ∈ L(FN : c). Hence, L(TN : a), U(IN : b), and
L(FN : c) are subalgebras of X .

Conversely, assume that for all a, b, c ∈ [−1, 0], the sets L(TN : a), U(IN : b), and L(FN : c) are ei-
ther empty or subalgebras of X . Let x, y ∈ X . Then TN (x) ≤ max{TN (x), TN (y)} and TN (x) ≤
max{TN (x), TN (y)}. Thus, x, y ∈ L(TN : max{TN (x), TN (y)}) ̸= ∅. By the assumption, we have
L(TN : max{TN (x), TN (y)}) is a subalgebra of X . Then x · y ∈ L(TN : max{TN (x), TN (y)}). Thus,
TN (x · y) ≤ max{TN (x), TN (y)}. Let x, y ∈ X . Then IN (x) ≥ min{IN (x), IN (y)} and IN (x) ≥
min{IN (x), IN (y)}. Thus, x, y ∈ U(IN : min{IN (x), IN (y)}) ̸= ∅. By the assumption, we have
U(IN : min{IN (x), IN (y)}) is a subalgebra of X . Then x · y ∈ U(IN : min{IN (x), IN (y)}. Thus,
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IN (x · y) ≥ max{IN (x), IN (y)}. Let x, y ∈ X . Then FN (x) ≤ max{FN (x), FN (y)} and FN (x) ≤
max{FN (x), FN (y)}. Thus, x, y ∈ L(FN : max{FN (x), FN (y)}) ̸= ∅. By the assumption, we have
L(FN : max{FN (x), FN (y)}) is a subalgebra of X . Then x · y ∈ L(FN : max{FN (x), FN (y)}). Thus,
FN (x · y) ≤ max{FN (x), FN (y)}. Hence, XN is a neutrosophic N -subalgebra of X .

The following theorem can be proved similarly to Theorem 3.21.

Theorem 3.22. A neutrosophic N -structure XN over X is a neutrosophic N -ideal of X if and only if for all
a, b, c ∈ [−1, 0], the sets L(TN : a), U(IN : b), and L(FN : c) are either empty or ideals of X .

The following two corollaries are a straightforward result of Theorems 3.21 and 3.22.

Corollary 3.23. A neutrosophic N -structure XN over X is a neutrosophic N -subalgebra of X if and only if
for all a, b, c ∈ [−1, 0], the set L(TN : a) ∩ U(IN : b) ∩ L(FN : c) is either empty or a subalgebra of X .

Corollary 3.24. A neutrosophic N -structure XN over X is a neutrosophic N -ideal of X if and only if for all
a, b, c ∈ [−1, 0], the set L(TN : a) ∩ U(IN : b) ∩ L(FN : c) is either empty or an ideal of X .

Definition 3.25. Let XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) be neutrosophic N -
structures of X and Y , respectively. The Cartesian product XN × YN = (X × Y,∆,Θ,Λ) defined by

(∀(x, y) ∈ X × Y )

 ∆(x, y) = max{TNX(x), TN Y (y)}
Θ(x, y) = min{INX(x), IN Y (y)}
Λ(x, y) = max{FNX(x), FN Y (y)}

 , (10)

where ∆,Θ, and Λ are N -functions on X × Y .

Remark 3.26. Let (X, ·, 1X) and (Y, ⋆, 1Y ) be Hilbert algebras. Then (X × Y, ⋄, (1X , 1Y )) is a Hilbert
algebra defined by (x, y) ⋄ (u, v) = (x · u, y ⋆ v) for every x, u ∈ X and y, v ∈ Y .

Proposition 3.27. If XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) are neutrosophic N -
subalgebras of Hilbert algebras X and Y , respectively, then the Cartesian product XN ×YN is a neutrosophic
N -subalgebra of X × Y .

Proof. Assume that XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) are neutrosophic N -
subalgebras of Hilbert algebras X and Y , respectively. Let (x1, y1), (x2, y2) ∈ X × Y . Then

∆((x1, y1) ⋄ (x2, y2)) = ∆(x1 · x2, y1 ⋆ y2)
= max{TNX(x1 · x2), TN Y (y1 ⋆ y2)}
≤ max{max{TNX(x1), TNX(x2)},max{TN Y (y1), TN Y (y2)}}
= max{max{TNX(x1), TN Y (y1)},max{TNX(x2), TN Y (y2)}}
= max{∆(x1, y1),∆(x2, y2)},

Θ((x1, y1) ⋄ (x2, y2)) = Θ(x1 · x2, y1 ⋆ y2)
= min{INX(x1 · x2), IN Y (y1 ⋆ y2)}
≥ min{min{INX(x1), INX(x2)},min{IN Y (y1), IN Y (y2)}}
= min{min{INX(x1), IN Y (y1)},min{INX(x2), IN Y (y2)}}
= min{Θ(x1, y1),Θ(x2, y2)},

Λ((x1, y1) ⋄ (x2, y2)) = Λ(x1 · x2, y1 ⋆ y2)
= max{FNX(x1 · x2), FN Y (y1 ⋆ y2)}
≤ max{max{FNX(x1), FNX(x2)},max{FN Y (y1), FN Y (y2)}}
= max{max{FNX(x1), FN Y (y1)},max{FNX(x2), FN Y (y2)}}
= max{Λ(x1, y1),Λ(x2, y2)}.

Hence, XN × YN is a neutrosophic N -subalgebra of X × Y .

The following proposition can be proved similarly to Proposition 3.27.
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Proposition 3.28. If XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) are neutrosophic N -
ideals of Hilbert algebras X and Y , respectively, then the Cartesian product XN × YN is a neutrosophic
N -ideal of X × Y .

The following two theorems are a straightforward result of Propositions 3.27 and 3.28, and Theorems 3.12 and
3.13.

Theorem 3.29. If XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) are neutrosophic N -
subalgebras of Hilbert algebras X and Y , respectively, then ⊕(XN ×YN ),⊗(XN ×YN ), and ⊙(XN ×YN )
are neutrosophic N -subalgebras of X .

Theorem 3.30. If XN = (X,TNX , INX , FNX) and YN = (Y, TN Y , IN Y , FN Y ) are neutrosophic N -
ideals of Hilbert algebras X and Y , respectively, then ⊕(XN × YN ),⊗(XN × YN ), and ⊙(XN × YN ) are
neutrosophic N -ideals of X .

Let (X, ·, 1X) and (Y, ⋆, 1Y ) be Hilbert algebras. A mapping f : X → Y of Hilbert algebras is called
a homomorphism if f(x · y) = f(x) ⋆ f(y) for all x, y ∈ X . Note that if f : X → Y is a homo-
morphism of Hilbert algebras, then f(1X) = 1Y . Let f : X → Y be a homomorphism of Hilbert alge-
bras. For any neutrosophic N -structure YN over Y , we define a new neutrosophic N -structure f−1(YN ) =
(X,Tf−1(YN ), If−1(YN ), Ff−1(YN )) over X by

(∀x ∈ X)

 Tf−1(YN )(x) = TN Y (f(x))
If−1(YN )(x) = IN Y (f(x))
Ff−1(YN )(x) = FN Y (f(x))

 .

Theorem 3.31. Let (X, ·, 1X) and (Y, ⋆, 1Y ) be Hilbert algebras. Let f : X → Y be a homomorphism and
YN be a neutrosophic N -structure over Y . If YN is a neutrosophic N -subalgebra of Y , then f−1(YN ) is a
neutrosophic N -subalgebra of X .

Proof. Assume that YN is a neutrosophic N -subalgebra of Y . Let x, y ∈ X . Then

Tf−1(YN )(x · y) = TN Y (f(x · y))
= TN Y (f(x) · f(y))
≤ max{TN Y (f(x)), TN Y (f(y))}
= max{Tf−1(YN )(x), Tf−1(YN )(y)},

If−1(YN )(x · y) = IN Y (f(x · y))
= IN Y (f(x) · f(y))
≥ min{IN Y (f(x)), IN Y (f(y))}
= min{If−1(YN )(x), If−1(YN )(y)},

Ff−1(YN )(x · y) = FN Y (f(x · y))
= FN Y (f(x) · f(y))
≤ max{FN Y (f(x)), FN Y (f(y))}
= max{Ff−1(YN )(x), Ff−1(YN )(y)}.

Hence, f−1(YN ) is a neutrosophic N -subalgebra of X .

The following theorem can be proved similarly to Theorem 3.31.

Theorem 3.32. Let (X, ·, 1X) and (Y, ⋆, 1Y ) be Hilbert algebras. Let f : X → Y be a homomorphism
and YN be a neutrosophic N -structure over Y . If YN is a neutrosophic N -ideal of Y , then f−1(YN ) is a
neutrosophic N -ideal of X .
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4 Conclusion

In this paper, we have introduced the notions of neutrosophic N -subalgebras and neutrosophic N -ideals of
Hilbert algebras. Conditions for neutrosophic N -structures to be neutrosophic N -subalgebras and neutro-
sophic N -ideals of Hilbert algebras are provided. From our study, we found that the Cartesian product of
neutrosophic N -subalgebras (ideals) of a Hilbert algebra is a neutrosophic N -subalgebra (ideal). Finally,
we found that the homomorphic pre-image of a neutrosophic N -subalgebra (ideal) of a Hilbert algebra is a
neutrosophic N -subalgebra (ideal).
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