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Abstract 

In the agricultural sector, tomato leaf diseases signify a lot because they result in a lower crop yield and quality. 

Timely detection and classification of diseases help to ensure early interventions and effective treatment solutions. 

Nonetheless, the existing methods are confined by the dataset imbalance which affects class distribution negatively 

and thus results in poor models, especially for rare diseases. The research is designed to improve the capability of 

tomato leaf disease identification by investing a new deep-learning method beyond the challenge of imbalanced 

class distribution. By balancing the dataset, we aim to improve classification accuracy as we pay more attention 

to the under-represented classes. The proposed GAN-based method that combines the Weighted Loss Function to 

produce tomato leaf disease synthetic images is underrepresented. They improve the quality of the entire dataset, 

and the images from every class are now in a more balanced proportion. A CNN, which is the convolutional neural 

network, is trained for the classifier, with the weighted loss function as a part of the model. We used Genetic 

Algorithm (GA) for hyperparameter optimization of the CNN. It helps in emphasizing the learning process from 

the under-represented class. The suggested one will not only decrease the accuracy of tomato leaf disease detection 

but also increase it. Therefore, the synthetic images created by GAN enhance the dataset since the class distribution 

is brought to equilibrium. The incorporation of the weighted loss function into the model’s training process makes 

it very effective in handling with the class instability problem and consequently, the model can identify both 

common and rare diseases. From the outcomes of this study, it can be concluded that it is feasible to employ GAN 

and one loser weights function to solve the problem of class imbalance in tomato leaf disease recognition. A 

suggested approach that increases the model’s accuracy and reliability could be a good move to enhancing a 

reliable method of disease detection in the agricultural sector. 

Keywords: GAN (Generative Adversarial Networks); Weighted Loss Function; Synthetic images; Convolutional 

Neural Network (CNN); Dataset diversity; Model accuracy; Robustness; Disease detection efficacy 
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1. Introduction 

The development of the identification of tomato leak disease can be summarized by some key changes in recent 

years, especially the combination of new technologies including GANs and weighted loss functions. These GAN-

based advancements demonstrate the attempts of scholars to develop and transform the GAN models for creating 

realistic images which is significant for the advancement of the detection models’ accuracy [1]. The quality of the 

synthetic images has been constantly optimized and refined along with the diversification of the images, which in 

turn, helps to widen the formation of the disease patterns and improve the detection algorithms. Furthermore, the 

utilization of loss functions provided with weights is an important strategy to deal with the problem of class 

instability which is very common in real-world datasets. The mechanism of these functions is that the models 

assign higher importance to the minority classes and as a result in the case of prevalent diseases the model is less 

biased for rarer diseases and thus bolsters its detection capabilities [2]. Such a strategy corresponds to a crucial 

stage in guaranteeing the non-discriminatory and dependable nature of the disease detection systems to raise their 

usability in agricultural contexts. Moreover, regulations development demonstrated the integration of 

environmental variability to the main goal of increasing the resilience of disease detection models [3]. Recognizing 

that the environment under which such systems must operate is not uniform, researchers have investigated both 

data augmentation and model regularization strategies. Such efforts are meant to strengthen the models' versatility 

to cope with variations in lighting, camera angles, and background clutter; thus, the models` reliability and 

appropriateness are enhanced in all realistic situations [4]. 

Tomato leaf disease detection, particularly the ones from the realm, has a lot of pending issues of strong impact 

that limit the development of optimal solutions. With class imbalance prominent among datasets, this barrier 

remains an important issue. Most times, the dominant diseases will draw more attention and specific models will 

be designed around them, often failing to detect and interpret the less common ailments well [5]. It is a game that 

prompts malfunctioning of disease detection tools, incorrect diagnosis and to be worse, poor intervention in the 

field. Furthermore, the systems already in place don’t effectively handle variable environmental conditions. 

Problems like changes in lighting, different camera angles, and background incongruity may compound into a 

noise and variation format that will make the detection algorithms misinterpret the captured environment. Data 

variability eliminates the possibility of a system functioning appropriately, with the inputs asking for a more 

practical approach in real-world agricultural settings. In addition to that, the existing study demands damages to 

the interpretability and scalability of existing methods [6]. Machine learning algorithms, including GAN-based 

models among others, are prone to producing results that either are hard to decrypt/interpret or explain, which 

directly has a negative influence on trust and adoption of these models by respective stakeholders [7]. Moreover, 

fewer scalability issues can emerge when trying to increase the number of areas and testing machines where the 

amounts of computers they can hold might be not so big. 

 

Figure 1. Enhancing Tomato Leaf Disease Recognition 
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Figure 1 gives the overview of this study. The focus is on the technologies, challenges, and strategies involved in 

improving the detection of diseases affecting tomato leaves. The technologies applied, such as GANs and 

Weighted Loss Functions, are essential for generating high-quality synthetic images and addressing class 

imbalance in datasets. The challenges section highlights issues like class imbalance and environmental variability, 

which can affect the accuracy of disease detection. Two strategies for improvement are to develop varied datasets 

by utilising data augmentation and to increase the model's capacity to generalise across various environmental 

circumstances by using model regularisation. This visual representation simplifies the complex aspects of tomato 

leaf disease recognition, showcasing the importance of advanced technologies and robust strategies in agricultural 

settings. 

The solution to the problem is a prerequisite requirement needed for the development of accurate tomato leaf 

disease detection thereby supporting global agricultural sustainability and food security. One of the techniques that 

we use to encourage class imbalance is the weighted loss function [8].  Therefore, in the process of detection, the 

system will favour the detection of common diseases just as rare diseases.  So, you will have more efficient and 

targeted disease prevention strategies. Thorough models that integrate crop varieties for different climates into a 

disease detection technology, will improve the performance and applicability of such technology across varying 

farming scenarios so that farmers can make sound choices and optimize resource usage [9]. 

With an enormous passion for using advanced technology to wrestle with the cumulative problems in the farming 

sector, especially the detection of tomato leaf illness, this research is meant for this. Facing global food security, 

agriculture within it often acts as a basic stone, but this industry is based on various challenges, like plant diseases 

[10]. Tomato plants that are climbed and hung on a trellis, can cheat soilborne diseases.  These diseases can kill 

plants, which destroy yields and make food production impossible. We desire to try out these techniques such as 

GANs and weighted loss function which are now contributing to an agricultural innovation that enhances the 

productivity of the sector [11]. These technologies create the prospect of bringing to the healthcare market 

completely new approaches to urgent health issues, allowing us to diagnose the disease more accurately and 

reliably. By way of putting weighted loss functions in our vision, we plan to bin the class imbalance and ultimately 

ensure the model for the discovery of diseases is fair in identifying both common and uncommon diseases. This 

idea is crucial in ensuring expedient interventions and also management effectiveness, ultimately ensuring yields 

and allowing farmers to have healthy livelihoods [12]. 

Environmental conditions were input in the model to measure the robustness of the system and therefore have the 

confidence that the disease can be detected in real-time monitoring [13]. Using models that can be continually 

modified to meet different circumstances as time goes on, we aim to invent products that will be usable in any 

kind of agricultural environment with no complications. Fundamentally, the objective will be the evolution of the 

existing sustainable global agricultural production system, and food security of the whole globe [14]. Our efforts 

are geared towards constructing tomato leaf disease detection centres armed with the requisite workforce, expertise 

to fight the impacts of diseases and the capability of allocating resources optimally, hence, enhancing the farmers’ 

ability to continue harvesting. We seek to contribute to bridging the gap and become a visible and strong line of 

connection aiming to create a better and more prosperous agricultural landscape for the farmers all around [15]. 

Here are some major contributions of this study are as follows: 

 The introduction of (GANs) for the production of tomato leaf disease images of higher quality is a novel 

method of image synthesis.  

 Develop weighted loss functions that will help in mitigating imbalance challenges in datasets, so that both 

common and rare diseases can be detected equally.  

 Building up models that are adaptable to the environment in nature of lighting changes and background 

obscurity, however, should enhance the reliability of the models in an agricultural setting.  

 Research is carried into transfer learning and domain adaptation methods to use existing knowledge and to 

increase detection accuracy which is crucial in a resource-limited setting.  

 Agricultural sustainability has practical implications, which include the best usage of resources and decreasing 

the proportion of unproductive crops through more accurate diagnosis of diseases.  

 Model interpretability and scalability as important factors in granting trust and helping the widespread 

application in the agro-industries. 

The structure of this paper is as follows. The Literature Review (Section 2) stipulate a comprehensive overview of 

existing research and developments in the field of tomato leaf disease recognition, focusing on technologies such 

as GANs, weighted loss functions, and strategies for addressing class imbalance and environmental variability. 

Section 3, Materials and Methods, details the experimental setup, comprising the pre-processed dataset, model 
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architectures, evaluation metrics, and model architectures. Section 4, Experimental Results, represents the 

outcomes of the experiments, analyzing the performance metrics and the effectiveness of the proposed methods. 

In Section 5, the Discussion, the results are interpreted, compared with existing literature, and implications are 

discussed. Section 6, Conclusion & Future Scope, summarizes the findings, discusses limitations, and proposes 

future research directions to further meliorate the accuracy and relevancy of tomato leaf disease recognition 

systems. 

2. Literature Review 

In 2019, Akshay Kumar and colleagues [16] presented a paper at the International Conference on Computing 

Communication and Networking Technologies, outlining a tomato leaf disease detection system that relies on 

images. The study used CNN in disease classification with a focus on tomato leaf diseases. The trained model gave 

a test accuracy of 99 percent which is quite astonishing. 25% when evaluated on the Plant Village dataset. 

However, some limitations were observed: the study was carried out on tomato leaf diseases only, and this 

somewhat narrows the study’s scope to other plant diseases. There was also some criticism related to the quantity 

of pictures in the test, which was 14,903, and there might be other variations of diseased and healthy plant leaves 

that were not included in the test. Also, the study failed to provide details of the types of diseases or conditions in 

the dataset, which could affect the model’s performance on individual diseases. 

M. Arsenovic et al., [17] Symmetry 2019, authors mentioned some of the limitations of the DL-based approaches 

to plant disease detection that are often considered to be state of the art. Firstly, we discover the wholesome model 

of a neural network with a unique two-level architecture to categorize plant diseases in natural conditions. The 

methodology utilizes experimental work to analyse the effect of training under various environmental situations 

including the real-time scenes and also involves the use of Style GAN to improve the detection ability. This paper 

highlights the attention that should be put to overcoming the hurdles in plant disease detection as this may result 

in huge damage to agriculture. However, deep learning techniques have achieved notable progress and are still 

associated with insufficient data to yield better results. Overlooks are exemplified such as using images with no 

clear society scenes for training, detecting various diseases or the occurrence of the same disease in one image and 

the solutions to all these problems taken together only. The article has a strong position on the future research that 

needs to be carried out to cure these challenges like plant disease detection in different plant growing locations 

and plant disease occurrence stages, and also collecting more data sources including location, climate and age of 

plants to improve disease detection accuracy. 

CNNs are used in Mercelin Francis et al.'s (2019) [18] paper, which was published in SPIN and deals with disease 

detection and categorization in agricultural plants. The study proposes an approach that will enable improving the 

model performance and effectiveness of disease detection in agriculture. The methodology is based on the 

development of a CNN model that has customized layers and functionality for plant disease recognition. The model 

is trained on a dataset of apple leaf and tomato leaf images, paying close attention to counter the phenomenon of 

overfitting. The achieved accuracy of 87% is the result of a performance evaluation that is done using a GPU 

Tesla. The paper points out the significance of reducing overfitting by adjusting the dropout values and also 

suggests future research directions, including the working out of the combined plant disease identification system 

that spits out the outcome in real-time. 

Batool et al.  (2020) [19] suggested an improved model that scored 76. 1% accuracy using the AlexNet model for 

classifying tomato leaf diseases. They underlined the significance of the application of disease classification in 

crop farming and the shortcomings of over-fitting even though some questions were raised about wrong pesticide 

use and the wider spread of diseases. 

Deshpande et al.  (2022) [20] suggested a novel approach where Generative Adversarial Network (GAN) and Deep 

Convolutional Neural Network (DCNN) are employed to improve tomato leaf disease detection accuracy. Even 

though considerable progress was attained, the study did not specifically mention the drawbacks of this scheme. 

Sardoğan et al. [21], presented an effective methodology for the identification of four varieties of tomato leaf 

diseases. The applied method unites CNN as a CNN auto-feature extractor and classifier with LVQ for network 

learning. The data set included 500 tomato leaf images that showed 4 tomato leaf disease symptoms. The research 

emphasized the central role of early disease detection in agricultural practices.  Here, the authors propose a CNN 

model and LVQ algorithm-based approach to address this issue. Despite the limits, the study took place under 

specific limits. It was mainly concerned with tomato diseases in the leaves.  It was not necessarily suitable for the 

treatment of other diseases. Along with the mentioned small dataset size of 500 images, doubts about its 

representativeness also raised the bar. Additionally, this process of validation, which is mostly experimental, may 

not fully reveal how it would be implemented in life. 
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In his paper by H. D. Gadade et al. (2020) [22], Gabor features were used for recognizing tomato leaf diseases and 

assessing the carrying out of the classifiers. SVM classification, the study emphasized the demand for accuracy 

through execution time settlement.  Therefore, the research team suggested using KNN which led to the 

enhancement in both performance and execution times. 

Sakkarvarthi et al.  (2022) [23], developed a model of CNN to solve a problem with tomato leaf disease detection 

and better results were achieved by their model than by a pre-trained one. The monitors of this project have 

accentuated the issue of pest and disease detection in the earliest stages of the tomato crop and have noted the 

liquidity of such research and the need for model improvement. 

Hasan et al.  (2019) [24] devised a system for precision farming using drones and CNN that realises a high degree 

of accuracy in image recognition of affected areas from diseases. However, the results of the trials were not 

precisely generalized and the challenges that could be encountered while using drones for precise farming were 

not all brought to light. 

Wu et al.  (2020) [25] on the other hand built a DCGAN architecture for the enhancement of data in tomato leaf 

disease identification that produced a high accuracy and diversity. Nevertheless, this study was dedicated to the 

tomato leaf classes, verifying the existence of other model studies in the future that will help to improve the 

approaches examined in this study. The overview of the literature review is shown in Table 1. 

Table 1: Summary of the literature review 

Ref. Methodology Main Findings Limitation 

[16] Convolutional neural 

networks (CNNs) were 

used in the process to 

classify images, 

especially for identifying 

illness in tomato foliage. 

The PlantVillage dataset 

was used to train a deep 

CNN., resulting in a test 

accuracy of 99.25%. 

They utilized a CNN for early 

identification of illnesses in 

tomato leaves, achieving a 

high-test accuracy of 

99.25%. 

- The study only focused on 

detecting disease in tomato 

leaves, limiting the 

generalizability to other plant 

diseases.  

 

[17] The process entails 

generating new pictures 

using the Style GAN 

network and testing the 

effects of training under 

various contexts, 

including real-life 

scenarios. The focus is on 

overcoming current 

limitations in plant 

disease detection. 

Significant losses are caused 

by plant diseases in 

agriculture, hence efficient 

disease detection techniques 

are required to avoid serious 

losses. Numerous diagnostic 

approaches have been 

developed, highlighting the 

need for precise and easily 

accessible detection 

procedures. For deep learning 

techniques to identify plant 

diseases more accurately, a 

lot of data is needed. 

- Absence of photos collected 

and annotated from actual 

scenarios - Inability to 

identify several illnesses 

present in a single picture or 

several instances of the same 

illness in a single picture  

- Utilising other data sources, 

like location, climate, and 

plant age, may increase 

accuracy. 

[18] The process includes 

building a Convolutional 

Neural Network model 

with particular layers and 

functions for identifying 

plant diseases, training 

the model using a dataset 

of photos of apples and 

tomatoes, resolving 

overfitting, and assessing 

GPU performance. Tesla. 

The research addressed 

overfitting, created an 87% 

accurate CNN model for 

categorization and detection 

of plant diseases, and 

suggested building an unified 

plant disease diagnosis 

system for real-time 

outcomes. 

- Overfitting issue addressed 

by adjusting dropout value - 

Suggestion for further 

research on developing a 

comprehensive approach for 

identifying plant diseases 
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[19] The methodology 

involved proposing an 

advanced classification 

model, using using 

multiple models to 

extract image attributes 

from a training dataset of 

450 photos, and using 

kNN for classification, 

achieving a classification 

accuracy of 76.1% with 

the AlexNet model. 

An advanced classification 

model achieved a 76.1% 

accuracy while employing 

the AlexNet model to identify 

and categorise tomato leaf 

disease, outperforming other 

models. 

- Lack of certainty in disease 

identification leading to 

potential incorrect pesticide 

use - Persistence of disease 

spread despite safety 

measures  

- Potential ineffectiveness of 

current classification 

methods 

[20] The approach included 

testing on 10 classes of 

tomato plant disease, 

using a GAN for data 

augmentation, and 

DCNN for feature 

representation and 

correlation. 

The research addresses 

shortcomings in current plant 

leaf disease detection 

techniques by introducing a 

unique strategy that uses 

DCNN and GAN, leading to 

notable improvements in 

performance measures. 

The study does not explicitly 

mention the limitations of the 

proposed scheme using 

DCNN and GAN for plant 

leaf disease detection. 

[21] The process included 

automated feature 

extraction and 

categorization using a 

CNN model, along with 

the LVQ algorithm for 

training the network on 

500 pictures of tomato 

leaves displaying four 

signs of illness. 

The study focuses on the 

importance of early disease 

detection in agriculture and 

presents a CNN model and 

LVQ algorithm-based 

method for effectively 

recognizing four different 

kinds of tomato leaf diseases. 

The study focuses on tomato 

leaf diseases, limiting 

generalizability  

- A small dataset of 500 

images may not be 

representative  

-Validation based on 

experimental results may not 

fully reflect real-world 

application 

[22] The methodology 

involves creating a 

module that uses a dataset 

of 500 photos of tomato 

leaves with seven 

symptoms to 

automatically classify 

plant leaf illnesses. The 

system includes modules 

for preprocessing, noise 

removal, feature 

extraction, classification, 

and recognized output. 

We tested the 

effectiveness of many 

classifiers with varying 

quantities of training 

photos. 

Gabor characteristics 

accurately identify several 

tomato leaf diseases; SVM is 

more accurate but requires a 

longer execution time, and 

performance was assessed 

based on accuracy, precision, 

F measure, and recall. 

One of the study's 

shortcomings is the trade-off 

between execution time and 

accuracy for SVM 

classification and the 

recommendation of using 

KNN classification for better 

performance and faster 

execution. 

[23] The methodology 

involved using the Plant 

Village dataset with 10 

classes of tomato leaves, 

implementing an 

enhanced CNN model 

with specific layers, and 

optimizing the input 

image size for improved 

performance. 

- The CNN model attained 

high accuracy in training and 

testing for tomato crop 

disease detection. - 

Compared to pre-trained 

InceptionV3, VGG19, and 

ResNet 152, the proposed 

CNN model fared better. - 

The study emphasizes the 

significance of early disease 

detection in tomato plants for 

- There aren't many studies 

that concentrate on 

identifying tomato crop 

diseases. - Need for 

improvement in the existing 

model  

- Data availability only upon 

request  

- No external funding was 

received for the research. 
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enhancing crop quality and 

quantity. 

[24] The methodology 

involved implementing a 

precision farming system 

using drones and 

Convolutional Neural 

Networks, utilizing a 

dataset of images, 

applying transfer learning 

to retrain the Google 

inception model, 

categorizing leaves into 

three groups, and 

achieving 99% accuracy 

at 85% training. 

The study achieved 99% 

accuracy in identifying high 

disease areas in tomato leaves 

when the percentage of 

training was raised to 85% 

and demonstrated fast 

execution speed by utilizing 

transfer learning on the 

inception model. 

- Generalizability of results to 

other crops or diseases not 

discussed  

- Limitations of using drones 

for precision farming not 

addressed  

- Potential challenges of 

using transfer learning for 

disease detection not 

mentioned. 

[25] Deep convolutional 

generative adversarial 

networks (DCGAN) were 

used in the process to 

supplement data, along 

with adjusting hyper-

parameters and 

modifying the 

architecture of CNNs to 

enhance the recognition 

of tomato leaf diseases. 

The use of DCGAN for data 

augmentation in tomato leaf 

disease identification 

significantly improved the 

accuracy, diversity, and 

generalization of the 

recognition model. 

- Traditional data 

augmentation methods are 

limited in achieving good 

generalization results  

- Focus on only 5 classes of 

tomato leaf images  

- Need for further research on 

different generative 

adversarial networks and 

hyper-parameters. 

 

2.1 Research Gaps 

There is a clear knowledge gap in the current literature on computational agricultural technologies regarding this 

study of the integrated application of GANs and weighted loss functions to overcome the class imbalance in the 

realm of identifying tomato leaf diseases, especially when focusing specifically on addressing the class imbalance 

in tomato leaf image datasets. Although some machine learning techniques give hope in detecting diseases from 

images, data with class imbalance still pose a critical problem because they make every model more biased and 

thus fail to precisely identify the minor diseases. Most of these methodologies often overlook the significance of 

addressing class imbalance.  This unintentionally makes those techniques work less effectively in real-world 

applications. Although GANs have been extensively utilized for image synthesis as well as augmentation in 

various domains containing computer vision, and medical imaging among others, their use in tomato leaf disease 

detection is not well documented. We now experience a shortage of research focused on the development of GAN 

architectures that bear the capabilities to emulate the peculiarity of plant disease pictures and the restoration of 

dissimilar and diverse images to activate the fight against class imbalance. 

Also, weighted loss functions have been suggested as a way to solve class imbalance in machine learning tasks 

but tomato leaf disease detection has not received much representation in the literature. The investigation of 

weighted loss functions with GANs for this particular purpose presents an innovative and very perspective area 

for enhancing the precision and robustness of disease detection models. 
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3. Materials and Methods 

Although skewed datasets provide a challenge, deep learning is a viable option for automating tomato leaf disease 

detection. The model's capacity to learn and recognize illnesses is hampered by the fact that these datasets often 

contain significantly more photographs of healthy leaves than images of sick ones. In actual operations where the 

rate of sick leaves is higher, this may lead to wrong identification. This work proposes an approach to tackle the 

problem of class imbalance and increase the rate of correct identification of illnesses to tackle this issue. The 

method builds fake pictures of sick leaves by applying a class imbalance handling and classification using CNN 

CNN-based Generative Adversarial Network. The proposed GAN-CNN effectively helps in balancing the dataset 

by creating new variants from the existing pictures of sick leaves by ‘learning’. This makes the model to have a 

more balanced representation when it is training. Also, during the training of the model, a Weighted Loss Function 

is incorporated. To counter the effects of the dominance of the majority class, which is the healthy leaves, this 

function gives higher weights to the minority class, the sick leaves, to learn the unique characteristics of diseased 

leaves. The aim of this combined technique is to improve tomato leaf disease detection detection models by 

creating artificially sick leaf pictures and training weighted loss functions. This method has the potential to 

transform agricultural practices by providing early and accurate disease diagnosis, which would enhance crop 

management and productivity. The overview of the GAN in this study is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Block diagram of GAN 

 

3.1 Dataset 

A valuable resource for developing and employing deep learning models for disease detection is the Plant Village 

tomato leaf disease dataset [26]. Although the exact methods of picture gathering are not disclosed to the public, 

the dataset probably includes photographs taken in controlled environments with a range of tomato plant types and 

at different phases of disease development. This guarantees that the model sees a variety of leaf appearances and 

illness manifestations. Experts carefully mark every photograph, stating whether the leaf is healthy or damaged 

and sometimes even identifying the exact type of illness. For supervised learning to take place and enable the 

model to understand the correlation between illness presence and picture attributes, labelling is a necessary step. 

The dataset has likely been divided into testing, validation, and training sets. In order to train the model, the training 

set is utilised, the validation set is utilised to fine-tune its performance, and the testing set is utilised to objectively 

evaluate the model's capacity to generalise to new data. The Images per class in Tomato Leaf Dataset are displayed 

in Figure 3. A sample of input images is presented in Figure 4. 
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Figure 3. Images per class in Tomato Leaf Dataset 

 

Figure 4. Sample Input Images 
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3.2 Data Pre-processing 

Preprocessing the images is an essential step in the deep learning task of classifying tomato leaf diseases, as it 

guarantees consistency and enhances model performance. Through this approach, the data format is fundamentally 

standardized and undesired variances that might impede the model's capacity to learn discriminative features for 

illness categorization are eliminated. The pre-processing methods included in the suggested methodology are as 

follows: 

Resizing: The size of an image might fluctuate. It is ensured that all photos are supplied into the model with the 

same input shape by resizing them to a consistent dimension (e.g., width x height). This streamlines processing 

and prevents problems in the neural network layers during computations. Resizing may be expressed using a 

straightforward notation like this: 

𝑁𝑒𝑤 𝐼𝑚𝑎𝑔𝑒 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡 𝑊𝑖𝑑𝑡ℎ, 𝑇𝑎𝑟𝑔𝑒𝑡 𝐻𝑒𝑖𝑔ℎ𝑡)               (1) 

Cropping: An image may occasionally contain background information that is not important. The tomato leaf itself 

is the Region of Interest (ROI) that is the target of cropping. By doing this, the model's processing requirements 

for data are decreased, and it may become more focused on characteristics linked to illness. One definition of 

cropping is: 

𝐶𝑟𝑜𝑝𝑝𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒[𝑦1: 𝑦2, 𝑥1: 𝑥2]                         (2) 

 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) represent the top-left and bottom-right corner coordinates of the ROI. 

Color Normalization: Depending on the illumination at the time of capture, images may show differences in color 

balance. The goal of color normalization techniques is to make the color distribution uniform in every image. 

Several techniques, including the use of normalizing functions and the subtraction of the mean color intensity, can 

be used to accomplish this. This is an illustration of a mean subtraction equation: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 − 𝑀𝑒𝑎𝑛(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠)           (3) 

 

where 𝑀𝑒𝑎𝑛 () calculates the average color intensity for each channel (Red, Green, Blue) of the image. 

Noise reduction: Noise generated during collection or transmission has the potential to distort images. There is 

noise that may be reduced to enhance the quality of the picture and one of the techniques that may be applied is 

filtering. Depending on the type of noise that was present, the specific filtering technique and the formula used 

would be appropriate. 

3.3 Class Imbalance Handling using Generative Adversarial Network (GAN) 

This becomes a problem in unbalanced datasets because often the number of healthy leaves will be significantly 

higher than that of the sick ones. Therefore, new ideas must be found on how to maintain model performance and 

credibility of the classification outcomes. 
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Figure 5. Handling Class Imbalance Using GANs 

Figure 5 below shows the flow chart depicting how a class imbalance in a dataset can be handled using GANs. 

The process begins with data collection, and then, the authors analyze the extent of the differences between classes 

in the data set. A GAN is then trained specifically on the minority class data to generate synthetic samples and 

hence increase the size of data and balance the classes. The expanded dataset is then applied in a classification 

model and its performance is then tested. In case of poor performance, the GAN is trained again to enhance the 

quality of the generated synthetic data. When the performance is acceptable, the model is deployed. It helps to 

achieve a better balance of the data set that the classifier uses, thus increasing its ability to perform well in the 

minority classes. 

The primary of the GAN [27] structure is the connection between the generator and the discriminator. The 

generator denoted by the letter is tasked with the role of generating artificial pictures of sick tomato leaves 

conditioned on the latent variables and the class labels. The generator’s mathematical objective is to learn the 

mapping function 𝐺: (𝑧, 𝑐), where c is the class label indicating the intended illness type and is a random noise 

vector sampled from the latent space. In the training dataset, the generator seeks to produce realistic pictures as 

the real sick-leaf samples. 
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𝐺: (𝑧, 𝑐) → 𝑥𝑠𝑦𝑛𝑡ℎ                                                            (4) 

 

On the other hand, the discriminator, represented by 𝐷, is a binary classifier that must be able to differentiate 

between real and fake pictures of leaves that are ill. The discriminator’s goal is to learn a discriminative function 

𝐷(𝑥), where 𝑥 is an input picture. The discriminator can differentiate between the fake pictures generated by the 

generator and actual diseased images from the training set through adversarial training. This adversarial 

relationship between the discriminator and generator is a competitive one since it forces the discriminator to learn 

how to distinguish the fake samples better and at the same time challenges the generator to produce better samples. 

 

[𝐷: 𝑥 → [0,1]]                                                                    (5) 

 

The generator and discriminator are in an adversarial relationship in the iterative training process of the IC-CGAN, 

always attempting to get the better of each other. In this way, the generator employs class conditioning and the 

concept of latent space as it generates batches of sick leaf pictures at each iteration. To enhance the discriminator’s 

capability of differentiating between the two classes, the parameters of the discriminator are adjusted, as well as, 

the authenticity of the synthetic and actual pictures is evaluated. Through this continuous training, the generator 

picks up the fundamental characteristics and intricacies of the ill tomato leaves, while the discriminator 

consolidates its capacity to discern between authentic and fraudulent samples. 

 

𝐷𝑟𝑒𝑎𝑙(𝑥) = 1, {𝐷𝑠𝑦𝑛𝑡ℎ(𝑥) = 0}                                                  (6) 

 

The class conditioning in the GAN-CNN model is integrated seamlessly, which enables the generation of a variety 

of sick leaf pictures that fit the various disease types. By training the generator based on the class labels 

corresponding to various diseases, the GAN-CNN fosters the creation of a diverse database for capturing various 

forms of diseases. Additionally, by augmenting the dataset, the class imbalance issue is resolved and the model's 

comprehension of the structure of diseases is improved, both of which improve the model's overall capacity to 

detect unknown samples. 

 

[D(x): Discriminator′s classification → {0,1}]                                 (7) 

 

The class conditioning in the GAN-CNN model is made to be integrated, which allows for the creation of a large 

number of sick leaf images that would suit the different types of diseases. Since the generator is trained based on 

the class labels of different diseases, the GAN-CNN facilitates the development of a database of different forms 

of diseases. Further, the class imbalance problem is removed by increasing the sample size and the model gains a 

better understanding of disease structures, enhancing the model’s ability to identify unknown samples. 

3.4 Feature Extraction 

This is important because in order to differentiate between the health and sickness of the leaves, features must be 

extracted from the processed images; this is because the model is capable of seeing details that are minute and 

which distinguish between the two classes. Feature extraction is the process of finding and quantifying the 

attributes of the visual data with respect to the differences in colour, texture, and form that are vital for the 

classification. In this way, raw pixel data is transformed into a more convenient form of features that can be further 

utilized in the classification pipeline’s subsequent steps of evaluation and decision-making. 
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Figure 6. Feature Extraction Process for Classifying Healthy and Sick Leaves 

From Figure 6 above, the following is the process of feature extraction in the classification of healthy and sick 

leaves. It begins with the capturing of the images of the leaves which include the normal and the diseased ones. 

These images are pre-processed and are made ready for analysis and this involves resizing, normalization and 

noise removal. The next step is feature extraction whereby such attributes as colour changes, texture, and shapes 

are extracted. These features are then converted to a form that is more compact and has more discriminative power 

which is ideal for the machine learning algorithms. With such extracted features, a classifier is trained to 

differentiate between infected and healthy leaves. In the classification evaluation, the following measures are 

usually used: accuracy, recall, F1-measure, and precision. Depend on the outcomes of the evaluation it can be 

concluded that the process of feature extraction has been enhanced and also the classifier. The last stage presents 

a clearer model which can be used practically to sort new images of the plant’s leaves. This systematic approach 

is useful in the classification of the health of the leaves in a more efficient as well as effective manner by employing 

feature extraction as well as machine learning. 

Feature extraction can be defined as the utilization of the techniques and procedures which are used for extracting 

and encoding the useful information from the visual data. These range from modern and complex methods such 

as deep learning algorithms to the traditional and basic methods such as manual feature extraction. Colour 

histograms or colour moments are one of the most popular features that are used in general computer vision 

applications for extracting colour-based information. The pixel intensities in different colour channels can be 

described using colour histograms that shed light on the image’s prominent colour schemes. The following formula 

can be used to define a colour histogram 𝐻 mathematically for each of the color channels such as red, green and 

blue: 

 

[H(i) = ∑ ∆(i − p)p∈Pixels ]                                                     (8) 
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where 𝑝 ranges through all the picture pixels, 𝑖 is an intensity level and ∆ is the Dirac delta function. Color 

histograms for each color channel are calculated to get information about the color distribution and variation within 

the picture. This knowledge may be useful in diagnosing some of the disease's symptoms or medical conditions. 

Besides the colour-based features, the texture patterns play an essential role in the discrimination of healthy and 

sick leaves as diseases often manifest themselves in changes in the texture of the leaves. A basic understanding of 

texture features is that they offer details about the surface characteristics and composition of the leaf through spatial 

distribution and statistical properties of intensities of the pixels. LBP is a widely used technique for extracting 

local texture information by comparing the pixel intensity values with the centre pixel’s intensity value in the 

neighbourhood. The formula below shows how the LBP operator quantitatively provides a binary code for a pixel 

depending on its relationship with its neighbouring pixels: 

 

𝐿𝐵𝑃{𝑃,𝑅}(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑠. (𝑔𝑝 − 𝑔𝑐)2𝑝𝑃−1
𝑝=0                                               (9) 

 

Where 𝑃 is the number of nearby pixels taken into consideration, 𝑅 is the radius of the circular neighbourhood 

around the central pixel (𝑥𝑐 , 𝑦𝑐), 𝑔𝑝 is the neighbouring pixel’s intensity value, is the centre pixel’s intensity value, 

and s. is the sign function. As for the textural differences that are characteristic of different leaf situations, they are 

described by the LBP features computed over different areas of the picture 

Additionally, the shape-based features provide useful information about the morphological features and geometric 

measurements of the leaves which can be employed as the discriminating attributes for classification. Some of the 

metrics that quantify the geometry of the borders of the leaves are contour curvature, compactness, and eccentricity 

of the contours. Hu moments, which do not change with translation, rotation, and scale transformation, are one of 

the shape descriptors often used in the categorization of leaves. The Hu moments can be mathematically computed 

from the image moments using the following formula 

 

eta(pq) =
μ(pq)

μ(p+q)/2+1                                                          (10) 

 

The zeroth order moment is expressed as μ and the image moments as μ(pq), where 𝑝 and 𝑞 are non-negative 

integers. The approach is to extract shape-related features that indicate the symptoms of certain illnesses or 

physiological abnormalities by calculating the Hu moments of the leaf shapes. In the procedure of feature 

extraction from the preprocessed images of leaves, many techniques and algorithms are employed to encode and 

gather relevant visual features. The model acquires a broad understanding of the primary characteristics that 

distinguish healthy leaves from sick ones through the attributes of color, texture, and form. These characteristics 

help the model to make accurate and informed decisions regarding the health of the leaves for the subsequent 

classification tasks since they act as discriminative cues. By using sophisticated feature extraction techniques, the 

classification pipeline attains increased specificity and sensitivity, which makes it possible to promptly identify 

and treat plant diseases in farming environments. 

3.5 Convolutional Neural Network (CNN) Model Architecture 

CNN [28] is utilized for image processing and classification. CNN is made up of one or more layers of convolution. 

Rather than dealing with a picture as a whole, CNN looks for aspects that work well inside images. CNN is 

composed of many hidden layers, an output layer, and an input layer. We used a deep CNN with three convolution 

layers in this research. By mixing two mathematical functions, convolution aids in the creation of a new function. 

One sample-dependent discretization technique is max pooling. Reducing an input representation's complexity 

will allow choices to be made about the characteristics contained in the binned sub-regions. Figure 7 shows how 

our CNN model operates with Max pooling. 
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Figure 7. Three Convolution Layer with Max pooling operation. 

This time, an average pooling mechanism is used in addition to the same architecture for function mapping. Figure 

8 depicts the model's activities. In average pooling, all values in the image matrix's area of interest are averaged, 

while in maximum pooling, the maximum value is taken in that region. We start with Keras for our CNN model. 

Sequential models (). The Max pooling procedure comes before the Relu activation feature in the first hidden 

layer. Max pooling helps to get crucial info while reducing the size of the photos. Max pooling lowers the size of 

the images while assisting in the collection of important data. Next, the second convolution layer receives the data. 

To get the most noteworthy information, maximum pooling is again applied. After that, the acquired image matrix 

is trained and flattened. Subsequently, there is training and picture matrix flattening. The model's performance was 

observed utilising the Average pooling procedure rather than the Max pooling technique. Adam stochastic gradient 

descent methods were used for training, to increase accuracy. For training, 80% of the images in our dataset are 

used. 
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Figure 8. Three Convolution Layer with Average Pooling Operation. 

 

3.6 Weighted Loss Function 

The training dataset consists of a corpus of labeled images, where each image is associated with a class label 

indicating whether it depicts a healthy or diseased leaf. However, class imbalances often prevail within such 

datasets, with a disproportionate number of instances representing one class over the other. This class imbalance 

can introduce biases during model training, potentially leading to suboptimal performance in classifying the 

minority class. To mitigate the adverse effects of class imbalance, a Weighted Loss Function is integrated into the 

training pipeline. The standard cross-entropy loss function, which measures the degree to which actual labels differ 

from those that were anticipated on the basis of the data, is the source of this customised loss function. By giving 

larger weights to the minority class (i.e., diseased leaves) and lower weights to the majority class (i.e., healthy 

leaves), the Weighted Loss Function modifies the contribution of each class to the overall loss computation. This 

allows for a more accurate representation of the overall loss. Mathematically, the standard cross-entropy loss 

function (𝐿𝐶𝐸) is expressed as: 

 

𝐿𝐶𝐸 =
1

𝑁
∑ ∑ 𝑦𝑖𝑐  𝑙𝑜𝑔(𝑦𝑖�̂�)𝐶

𝑐=1
𝑁
𝑖=1                                                 (11) 

 

Where: 

𝑁 represents the total amount of samples. 

𝐶 represents the number of classes. 

𝑦𝑖𝑐  signifies whether the ith sample belongs to class 𝑐. 

(𝑦𝑖�̂�) denotes the expected probability of the ith sample that is included to class c. 

The Weighted Cross-Entropy Loss (𝐿𝑊𝐶𝐸), which is calculated by factoring class weights into the loss function, is 

calculated as: 
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𝐿𝑊𝐶𝐸 =
1

𝑁
∑ ∑ 𝑤𝑐 ∗ 𝑦𝑖𝑐  𝑙𝑜𝑔(𝑦𝑖�̂�)𝐶

𝑐=1
𝑁
𝑖=1                                       (12) 

Here, 𝑤𝑐  represents the weight assigned to class c during training. In scenarios characterized by class imbalance, 

higher weights are allocated to the minority class (diseased leaves), thereby prioritizing the model's learning of 

features specific to diseased leaves while attenuating the influence of the majority class. Stochastic gradient 

descent (SGD) and Adam are two examples of optimisation algorithms that are utilised by the model in order to 

perform iterative updates of its parameters throughout the training phase. These algorithms minimize the Weighted 

Cross-Entropy Loss, facilitating the convergence of the model towards an optimal configuration. By integrating 

the Weighted Loss Function into the training regimen, the model is incentivized to accurately classify instances 

from the minority class, thereby enhancing its capacity to discern between healthy and diseased leaves. 

3.7 Optimization 

Due to the fact that the trial was conducted manually, it was possible to find a suitable fully linked layer design 

that had a satisfactory learning rate, in addition to the amount of time that is required to carry out these tests, is the 

reason why we suggest the use of optimisation methods for this process. PSO and GA are the two algorithms with 

a bioinspired design that have been selected as the optimisation strategies. For the purpose of optimisation, we 

took into consideration the same constant for both methods, which are as follows: 

 Learning rate;  

 The quantity of layers with full connectivity;  

 Number of neurons in every layer that is fully linked;  

 The dropout occurs after the layers that come after them;  

 The percentage of dropouts that are present in the layer; 

Additionally, the range of the optimised parameters is the same for both of the bio-inspired algorithms. In spite of 

the fact that the value that is employed in the process of constructing the learning rate (LR) is stated as an integer 

value (𝑙𝑟) throughout the range [1,6], the value that is utilised in the process of converting to the CNN is 10 lr. 

[3,10] is the range that contains the value that is referred to as fc, which is the value that is used to define the 

number of neurons that are present in a given layer. This value is then converted into 2fc so that it may be used 

when defining the CNN layer that is fully connected. One more thing: the layer's dropout rate is represented by a 

float number that falls somewhere in the range of [0, 0.6]. In addition, the quantity of fully interconnected layers 

is an example of an implicit argument. Additionally, a dropout layer is added after every completely linked layer, 

which indicates that these levels are not expressed as algorithmic arguing. Rather, they are the outcome of the 

individual or particle definition of the algorithm. 

This research makes use of these two bio-inspired optimisation strategies in order to locate a suitable architecture 

for the completely linked layers that has a satisfactory the learning rate's value. On the following page, we will 

discuss both the PSO and GA techniques. 

3.7.1. Genetic algorithm 

In the first algorithm, the genetic algorithm that we employ is presented, and in the subsequent paragraphs, the 

methodology that underpins it is detailed in further detail. 

The manner in which a person is going to be outlined is the first significant definition being provided by the GA. 

After being inspired by the model described in Reference [22], which achieved flexibility for the GA person by 

using ordinary crossover operators, we made the decision to additionally utilise a fixed length individual that 

included a flag that indicated whether or not that particular chromosome was allowed to be turned on or off. The 

definition of our individuality is shown in Figure 2. Each individual is made up of twelve chromosomes, and each 

chromosome is made up of two different sections. There is a flag that is integrated to indicate whether or not that 

particular chromosome is modify (the 'Is present?' in this particular figure), and there is also a number that specifies 

the measure of that particular parameter or layer. Given that we are working with a given individual length; the 

learning rate is determined by the first chromosome. The completely connected layers and the dropout layers are 

defined from the second chromosome all the way up to the eleventh chromosome. The chromosomes that are odd 

in this range are responsible for defining the dropout layers, whereas the chromosomes that are even are responsible 

for defining the fully connected (FC) layers. Furthermore, in order for the individual to correspond to a legitimate 

CNN, the final chromosome in our particular scenario is always an FC layer with a value of 1, as 21 is the output 

of the CNN. This is because 1 is the value of the FC layer. 
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Algorithm 1 GA algorithm 

1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒) 

2: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 [] 
3: for 𝑖 < 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 do 

4:    𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑖] ← 𝑐𝑎𝑙𝑐𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑖]) 

5: end for 

6: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑠𝑜𝑟𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 

7: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[0] 
8: 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[0] 
9: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 

10: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

11:    𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠1 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑢𝑟(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑡𝑜𝑢𝑟𝑆𝑖𝑧𝑒) 

12:    𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠2 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑢𝑟(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑡𝑜𝑢𝑟𝑆𝑖𝑧𝑒) 

13:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← [] 
14:    for 𝑖 < 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠1. ; 𝑙𝑒𝑛𝑔𝑡ℎ do 

15:       𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠1[𝑖], 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠2[𝑖]) 

16:       𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛+= 𝑐ℎ𝑖𝑙𝑑1 

17:       𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛+= 𝑐ℎ𝑖𝑙𝑑2 

18:    end for 

19:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑎𝑝𝑝𝑙𝑦𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

20:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ← [] 
21:    for 𝑖 < 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝑙𝑒𝑛𝑔𝑡ℎ do 

22:       𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠[𝑖] ← 𝑐𝑎𝑙𝑐𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑖]) 

23:    end for 

24:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛+= 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
25:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠+= 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠  
26:    𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ←

   𝑠𝑜𝑟𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠) 

27:    𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑅𝑒𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠) 

28:    𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[0] 
29:    𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[0] 
30: end for 

 

 

Figure 9. A photograph from Baldominos [24] was used as an example. 

 

Figure 10. GA person definition. 
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Further, a consequence of our representation is that the succeeding dropout chromosome is simply ignored if a 

chromosome from the FC layer has the 'Is present?' value equal to zero throughout the dropout process. This is 

because we only utilise the Dropout chromosome for the chromosome that is immediately before it in the FC layer. 

In addition, it is essential to keep in mind that the number of entirely connected layers in the GA is inextricably 

linked to the number of chromosomes in the FC layer that have a value of 1 for the 'Is present?' flag. This is an 

inherent relationship between the two variables. 

For the purpose of determining how well the CNN with the GA definition for the FC layers’ architecture operates, 

it is essential to train the CNN. This is done in order to get the desired results. The training of a CNN is thus 

necessary in order to determine the level of fitness possessed by each individual. In reality, the F1-score of the 

validation set is what should be considered the individual's fitness level. During the course of the experiment, we 

discovered that people had a non-decreasing number of neurons. This indicates that the number of neurons in layer 

i was smaller than the number of neurons in layer i+1. This was the case throughout the investigation. In the 

literature, the process of increasing the number of neurons in the FC portion of the CNN from one layer to the next 

is not something that is frequently observed very frequently. As a consequence of this, we came to the conclusion 

that designs that display this peculiar behaviour should be penalised by a factor of 0.7, which was selected 

experimentally. In the event that an individual maps to an FC layer that is 256 -> 256 -> 1024, for instance, that 

individual will be penalised, whereas an individual that maps to an FC layer that is 1024 -> 1024 -> 256 would 

not be penalised. As a result, the condition is stated as follows: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = {
0.7 ∗ 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,    𝒏𝒐𝒏 − 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,            𝒏𝒐𝒏 − 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟

 

 

It is important to specify the choice, reinsertion, mutation, and crossover operators once the 𝑡𝑒 individual 

representation has been chosen and the fitness calculation has been performed. In light of the fact that we have a 

predetermined length for each individual, we have made the decision to use a single crossover point, which is the 

point at which two parents produce two children. A site 𝐶𝑝 is selected at random, and the first child inherits the 

chromosomes that come before 𝐶𝑝 from the first parent and the chromosomes that come after 𝐶𝑝 from the second 

parent. This occurs through the process of inheritance. The converse is true for the second child, who receives the 

first half of their inheritance from the second parent and the second part from the first parent during their 

inheritance. One illustration of a crossover is shown in Figure 11. 

We established yet another significant GA operator, which was the method by which the people would be chosen 

for the crossover comparison. We have decided to use the tour as the selection technique since it enables us to alter 

the exclusive pressure exerted by the GA by adjusting the size of the trip. Therefore, by using this strategy, we are 

able to try out various tour sizes in order to determine which one is the most appropriate for our issue. A value that 

we refer to as "tourValue" is needed for the tour selection process to function properly. We choose people from 

the total population who are considered to be 'tourValue' in a random fashion, and the one who has the highest 

level of fitness is the one who is chosen for the crossover. Because of this, we employ the tour choice twice for 

each set of parents that are participating in the crossover, with one instance for each parent. 

Altering a value that is derived from an individual is the method that is utilised to carry out the mutation. Depending 

on the context, this value could originate from either the 'Is present?' portion or the actual value section. A 

chromosome that is going to be modified is chosen at random, and then the portion of the chromosome that is 

going to be altered is chosen. It is the exact stretch of the chromosome that is responsible for the generation of the 

new value. Consequently, if the 'Is present?' is chosen to be mutated, the only change that occurs is a change from 

0 to 1 or vice versa. When it comes to the values, a new value is created at random from the range that corresponds 

to that place. A mutation that occurred in a person is shown in Figure 12. The values that were altered are shown 

by the red values in the illustration. 

The final method that we utilise for reinsertion is called order reinsertion, and it involves preserving the most 

exceptional individuals from one generation to the next. 
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Figure 11. GA crossover. 

 

Figure 12. GA individual mutation. 

 

3.8 Training and Evaluation 

The training process for tomato leaf disease detection by GANs and Weighted Loss Functions is a series of key 

steps. In the beginning, the dataset of the tomato leaf images is thoroughly sorted, and the preprocessing and 

augmentation are carried out to enrich the data. Therefore, the class distribution within the dataset is maintained 

by the image generation through GANs and Weighted Loss Functions which on the other hand help in reducing 

the impact of the class imbalance. A CNN architecture is proposed and this is done by the weighted loss function, 

which serves as the primary component for the removal of class imbalance in the case of training. After that, the 

given dataset is balanced, and then the CNN model is trained on the balanced dataset which is specifically designed 

to learn from the classes that are scarce in the dataset. The training process is performed by optimization methods 

such as Adam or RMSprop that adjust the model’s parameters during the training process, while hyperparameters 

are selected to provide the best results. Some of the methods such as batch normalisation and dropout are applied 

to reduce overfitting and enhance the model’s performance. 

Once the training is over, the trained model is subjected to an assessment to determine how effective it is in 

diagnosing diseases in the tomato plant leaves. First, the model is tested on another set of data that is used 

specifically for this purpose, and therefore the results of the test on the data are not viewed, and the danger of 

overlearning is averted. Measures like as accuracy, F1-score, recall, and precision are used to ascertain the model's 

capacity to identify occurrences. We can ascertain the model's capacity to accurately detect both common and 

uncommon illnesses by evaluating the findings in terms of classes. The comparative analysis against the baseline 

methods gives insights into the superiority of the proposed methodology in class imbalance mitigation and disease 

detection accuracy improvement. Besides, the strength of the model is checked by sensitivity analysis and 

evaluation under different environmental conditions and image variations. The practical implications, like the 

model's effect on crop yield and quality, are also looked into, thus giving a clear idea of its real-life application. 

The effectiveness of the suggested method in the detection of tomato leaf disease is tested and assessed through a 

lot of training and evaluation processes, thus, contributing to the progress of the methods in the agricultural sector. 
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4. Experimental Results 

 

Tomato leaf diseases are important in agriculture because they greatly affect the yield and quality of the produce. 

Early identification and categorization of these diseases is essential to be able to provide appropriate preventive 

and treatment measures. However, current detection methods are not without their limitations as the datasets are 

often imbalanced where the distribution of the disease types does not favour the less frequent diseases, which in 

turn, yields poor models for such diseases. The objective of this work is to improve the diagnosis of tomato leaf 

diseases with the help of a novel deep-learning approach that addresses the issue of class imbalance. In this paper, 

the use of the balanced dataset aims at improving the accuracy of the disease classification, especially on diseases 

that are rarely encountered in the dataset. Our method entails the use of Generative Adversarial Networks (GANs) 

and Weighted Loss Functions to generate the images of tomato leaf diseases. These synthetic images help in 

dealing with the problem of data scarcity in regard to the different diseases. These synthetic images were used to 

train a CNN classifier and the weighted loss function which assigns more weight to the less frequent disease 

classes. This not only assists in enhancing the efficiency of the diseases in classification of the diseases in tomato 

leaves but also in enhancing the model for handling the imbalanced data. This paper shows that GANs and 

weighted loss function can reduce class imbalance in the identification of tomato leaf diseases and can be a good 

starting point for further enhancement of disease identification in agriculture. 

 

4.1 Experimental Setup 

In our experiment, to ascertain the efficiency of the novel technique in identifying illnesses in tomato plant leaves, 

we conducted many experiments. GANs and Weighted Loss Functions are the approaches used in the research to 

solve the issue of class imbalance in the dataset. Namely, with given dataset D, the experiments were conducted 

on the set of images containing infected tomato leaves. For these calculations, we employed a high-end desktop 

computer with an Intel Core i7-10700K processor that operates with a clock rate of 3. Operating frequency 80 

GHz, Random access memory 32 GB, Graphic card NVIDIA GeForce RTX 2080 Super with 8 GB of VRAM. 

For all the experiments, the system used was a Windows 10 operating system. The programming language used 

for the development was Python (version 3. 9) and the prominent libraries used were Pandas for data handling, 

Scikit-learn for machine learning, NumPy for numerical computations, and TensorFlow (version 2. 7) are the three 

libraries that are being used for deep learning model development and training. The effectiveness of the model was 

assessed using the performance metrics like recall, precision, accuracy, and F1-Score to establish the models’ 

efficiency in diagnosing diseases. This configuration enabled us to conduct a highly credible comparison of the 

new method with a high degree of reliability of the results concerning the identification of tomato leaf diseases. 

During the course of this research, it was necessary to conduct several experiments to assess the efficiency of the 

new technique to diagnose the diseases on the leaves of tomatoes. This is quite evident from the proposed GANs 

and the Weighted Loss Functions to address the class imbalance in the given dataset. The experiments were 

conducted on the dataset D which include a collection of images of tomato leaves which were infected. 

he degree of class distribution in the dataset used before the beginning of the experiments is assessed by the 

Imbalance Ratio (IR), this is calculated as the percentage of cases that fall into the majority class (𝑁𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠) 

to the quantity of cases when the minority class is involved (𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠). In mathematics, IR is expressed as: 

𝐼𝑅 =
𝑁𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
                                                             (13) 

Following the first assessment, we proceeded to the dataset balancing employing GAN-based synthetic image 

generation and Weighted Loss Functions. This procedure was created to fix the class distribution problem and 

therefore the dataset became more representative of all disease classes. 

During the model training stage, a CNN architecture with the weighted loss function was used. 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜆 × 𝐿𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑                               (14) 

In this case, 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  which stands for the standard classification loss, and 𝐿𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is the weighted 

loss function that is used to reduce the impact of class imbalance. The hyperparameter 𝜆 is responsible for the 

coefficient that controls the weight of the damage function. 

During the whole training process, special attention was put on the learning from under-represented classes, as a 

result, the model proved accurate in identifying both common and uncommon disorders. 

https://doi.org/10.54216/FPA.160210


 

Fusion: Practice and Applications (FPA)                                                        Vol. 16, No. 02. PP. 147-177, 2024 

168 
DOI: https://doi.org/10.54216/FPA.160210  
Received: December 25, 2023 Revised: February 28, 2024 Accepted: June 06, 2024 

 

When compared to standard methodologies, the performance evaluation of the suggested methodology shown 

significant improvements in classification accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%                         (15) 

4.2 Performance Metrics 

Accuracy measures the overall correctness of the model by calculating the ratio of correctly predicted occurrences 

(including true positives and true negatives) to the total number of instances. It shows the frequency with which 

the model produces accurate forecasts. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100                                            (16) 

Positive predictive value, or precision, is a metric that expresses the proportion of true positive predictions among 

all the model's generated positive predictions. It displays the percentage of favourable occurrences that are really 

anticipated. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                                     (17) 

Recall, sometimes called sensitivity or true positive rate, is the percentage of real positive cases that the model 

accurately recognised. It shows how successfully the model is able to recognise every good scenario. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                      (18) 

A statistic that provides a balance between accuracy and recall is the F1-score, which is the harmonic mean of the 

two. It is particularly helpful when there is an unequal distribution of courses since it helps strike a balance between 

memory and accuracy. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100                                            (19) 

 

4.3 Results 

 

Figure 13. Training and Validation accuracy curve without GAN for class imbalance 

Figure 13 depicts a line graph comparing ‘Training accuracy’ and ‘Validation accuracy’ over 16 epochs. The 

‘Training accuracy’, shown in blue, starts just above 0.6 and exhibits a steady upward trend, nearing 1.0 by the 

final epoch, showing a consistent improvement in the model's operation using the training set of data. In contrast, 

the ‘Validation accuracy’, in orange, displays more fluctuation but also trends upward, beginning at around 0.8 

and slightly trailing behind the training accuracy by the end of the epochs. This figure is often used to illustrate 

how a machine learning model learns from training data and how well it can generalise that learning to new data. 

The fact that the two lines come very close to each other in the final epoch shows that the model fits very well and 

performs well on both the training and Validation sets. 
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Figure 14. Training and Validation loss curve without GAN for class imbalance 

Figure 14 is a graph with two curves; the blue one is ‘Training loss’ and the other one is ‘Validation loss’, and it 

has epochs ranging from 0 to 16. The ‘Validation loss’ line, in red, also decreases gradually, meaning that the 

model learns from the validation set as the epochs increase. The ‘Validation loss’ line, orange in color, has some 

ups and downs, this suggests that the model's performance is inconsistent when using the validation data. This is 

common in machine learning and may indicate overfitting if the validation loss rises as the training loss falls, or 

underfitting if they are both high. The ideal scenario is when both lines are decreasing and are as close to each 

other as possible, meaning that the model has good generalization to new data. 

 

Figure 15. Training and Validation accuracy curve with GAN for class imbalance 

Figure 15 is the result of the validation and training accuracy of a model for fifty epochs. The training accuracy is 

indicated by the blue line while the validation accuracy is indicated by the orange line. The training accuracy 

generally increases over time, while the validation accuracy fluctuates. This implies that the training data have 

caused the model to overfit. 
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Figure 16. Training and Validation loss curve with GAN for class imbalance 

Figure 16 represents the validation and training loss plot of a machine learning model. The training loss is initially 

high gradually decreases, and finally reaches a relatively stable level. The validation loss also begins high and 

reduces for a time before rising again starting to oscillate and finally increasing. This suggests that the model is 

picking up a lot of knowledge from the training data set, and thus it is not very good at generalizing to new data. 

Table 2: Analysis of Different image classification models with the proposed method 

Classifiers Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

VGG19 94.99 93.98 93.95 93.96 

ResNetV152 97.96 98.00 98.00 98.00 

Inception V3 88.00 98.00 88.00 92.00 

Proposed (GAN-CNN) 99.95 99.98 99.98 99.98 

 

Table 2 presents a comparative analysis of different image classification models, highlighting their performance 

across four metrics: This study included accuracy, F1-score, recall, and precision as evaluation criteria. The 

classifiers that have been considered are VGG19, ResNetV152, Inception V3, and another one based on GAN-

CNN. VGG19 attained an accuracy of 94. 99%, precision of 93. 98%, recall of 93. 95%, and an F1-Score of 93. 

96%. 00%. ResNetV152 had the best results with accuracy, precision, recall, and F1-Score of 98%. 00%. Inception 

V3 had a rather average performance, with an accuracy of 88 percent. 00%, high recall at 98. Accuracy was high 

at 00%, while the recall was slightly lower at 88. 00%, hence obtaining an F1-Score of 92. 00%. The proposed 

GAN-CNN model surpassed all other classifiers by a very wide margin and recorded near-perfect accuracy of 99. 

95% accuracy, and 99. 98% for precision, recall, and F1-Score, which clearly shows that the proposed approach 

is more efficient for image classification. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 17. Analysis of Different image classification models with the proposed method 

A comparison of several picture classification models is shown in Figure 17, including VGG19, ResNetV152, 

Inception V3, and a proposed method using GAN-CNN, across four performance metrics: Accuracy, F1-score, 

recall, and precision are all included. Regarding precision, VGG19 scored 94. 99%, ResNetV152 scored 97. 

Inception V3 achieved 96% for identification and 88% for the proposed model. 00%, while the suggested GAN-

CNN approach produced the greatest outcomes with a remarkable 99. 95%. The detailed results show that VGG19 

achieved a precision of 93 percent. 98%, ResNetV152 and Inception V3 both achieved an accuracy of 98. 

However, the proposed GAN-CNN method was again superior to the rest with an almost perfect accuracy of 00%. 

98%. In terms of recall, the VGG19 had a 93. In the case of the 95% rate, ResNetV152 achieved the same level of 

precision as the previous model with 98. It was also observed that for 0% of the images, YOLOv3 was able to 

recall 88% while Inception V3 was able to recall 88%. 00%. The proposed GAN-CNN method maintained its high 

level of efficiency with a recall of 99. 98%. Eventually, VGG19 scored 93. 96% in the F1-score measure, which 

takes into account both accuracy and recall, whereas ResNetV152 scored 98. For instance, Inception V3 achieved 

an accuracy of 92 percent with 00 percent data. 00% and the proposed GAN-CNN method once more led with a 

nearly perfect score of 99. 98%. In general, it can be seen that the proposed GAN-CNN model performed 

remarkably well in all the assessment measures as compared to the other models with a near-perfect value for 

accuracy, precision, recall, and F1-score. This analysis focuses on the efficiency of the GAN-CNN approach in 

image classification compared to other models that have been proposed in the literature. 
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Table 3: Performance of different classifiers without explicit feature extraction 

Classifiers Accuracy(%) Precision(%) Recall(%) F1-Score(%) 

VGG19 84.00 88.00 84.00 90.00 

ResNetV152 89.50 85.00 84.00 84.5 

Inception V3 78.00 88.00 88.00 88.00 

Proposed(GAN-CNN) 97.68 96.95 96.98 96.93 

 

Table 3 compares the performance of various image classification models without explicit feature extraction, using 

four key metrics: Accuracy, Precision, Recall, and F1-Score. The models evaluated are VGG19, ResNetV152, 

Inception V3, and a proposed GAN-CNN approach. VGG19 achieved an accuracy of 84.00%, precision of 88.00%, 

recall of 84.00%, and an F1-Score of 90.00%. ResNetV152 showed slightly better accuracy at 89.50%, but lower 

precision and recall at 85.00% and 84.00% respectively, leading to an F1-Score of 84.5%. Inception V3 had an 

accuracy of 78.00%, with higher precision and recall at 88.00%, resulting in an F1-Score of 88.00%. The proposed 

GAN-CNN model outperformed the others significantly, achieving 97.68% accuracy, 96.95% precision, 96.98% 

recall, and a 96.93% F1-Score, indicating its superior performance even without explicit feature extraction. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 18. Performance of different classifiers without explicit feature extraction 
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Figure 18 presents the performance of various classifiers—VGG19, ResNetV152, Inception V3, and a proposed 

method using GAN-CNN—across four key metrics: Performance metrics such as accuracy, precision, recall, and 

F1 score were assessed without the need for feature engineering. When it comes to the accuracy, VGG19 had a 

score of 84. 00%, ResNetV152 obtained 89. It achieved 50% and Inception V3 achieved 78. 00%. The suggested 

GAN-CNN approach beat the other models with an astounding accuracy of 97. 68%. For accuracy, VGG19 got 

88. 00%, ResNetV152 reached 85. The highest and the lowest accuracy were 100% and 88%, respectively, while 

using Inception V3. 00%. Once again, the proposed GAN-CNN method proved to be more efficient with 96 percent 

accuracy. 95%. As for recall, VGG19 and ResNetV152 both got 84. It is noteworthy that the Inception V3 model 

had the best accuracy of 88 for this dataset. 00%. 00%. The proposed GAN-CNN method had the highest recall of 

96. 98%. In the F1-score metric that gives equal importance to precision and recall, VGG19 scored 90. 00%, 

ResNetV152 had 84. It achieved 50% and Inception V3 scored 88. 00%. The proposed GAN-CNN method, once 

again, outperformed all other methods with F1-score of 96. 93%. 

Table 4: Performance of different classifiers with feature extraction techniques 

Classifiers Accuracy(%) Precision(%) Recall(%) F1-Score(%) 

ResNet50 97.46 98.52 98.65 98.58 

VGG16 89.68 90.25 92.52 91.38 

MobileNet V2 95.78 96.86 96.89 96.87 

Proposed(GAN-CNN) 99.95 99.98 99.98 99.98 

 

Table 4 evaluates the performance of various image classification models utilizing feature extraction techniques, 

comparing their Accuracy, Precision, Recall, and F1-Score. The models assessed include ResNet50, VGG16, 

MobileNet V2, and a proposed GAN-CNN method. ResNet50 demonstrated strong performance with 97.46% 

accuracy, 98.52% precision, 98.65% recall, and a 98.58% F1-Score. VGG16 had an accuracy of 89.68%, with 

precision at 90.25%, recall at 92.52%, and an F1-Score of 91.38%. MobileNet V2 also performed well, achieving 

95.78% accuracy, 96.86% precision, 96.89% recall, and a 96.87% F1-Score. The proposed GAN-CNN model 

significantly outperformed the others, with near-perfect scores of 99.95% accuracy and 99.98% for precision, 

recall, and F1-Score, highlighting its superior efficacy when using feature extraction techniques. 

 

 
(a) 

 
(b) 
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(d) 

Figure 19. Performance of different classifiers with feature extraction techniques 

Figure 19 visualizes the performance metrics—Accuracy, Precision, Recall, and F1-Score—of four image 

classification models: ResNet50, VGG16, MobileNet V2, and the proposed GAN-CNN, all using feature 

extraction techniques. The proposed GAN-CNN model demonstrates the highest performance across all metrics, 

with an Accuracy of 99.95%, Precision of 99.98%, Recall of 99.98%, and F1-Score of 99.98%. ResNet50 also 

shows excellent performance, particularly in Precision (98.52%) and Recall (98.65%), leading to a high F1-Score 

of 98.58%. MobileNet V2 performs well, with Accuracy at 95.78%, Precision at 96.86%, Recall at 96.89%, and 

F1-Score at 96.87%. VGG16 exhibits the lowest performance among the four models but still maintains 

respectable values with Accuracy at 89.68%, Precision at 90.25%, Recall at 92.52%, and F1-Score at 91.38%. This 

comparison highlights the superiority of the GAN-CNN method and the effectiveness of feature extraction 

techniques in enhancing model performance. 

Our experiments showed that the weighted loss function was successful in balancing the class imbalance and hence 

the disease detection capability became robust for the whole range of tomato leaf diseases. 

 

Figure 20. Prediction results of the proposed GAN-CNN model 
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In this paper, the authors have presented the results of the proposed GAN-CNN model for image classification in 

Figure 16. This figure may contain some images and the associated predicted labels given by the GAN-CNN 

model. The figure proves the efficiency of the GAN-CNN model in terms of accuracy and reliability, as it proves 

its ability to predict and classify images in different categories. Every example in the figure may provide visual 

corroboration of the predicted labels and true labels, with a focus on cases where the model correctly identified 

the content of the images. The perfect prediction, as illustrated in Figure 20, further strengthens the earlier observed 

high accuracy, precision, recall, and F1-score of the model. The above figure depicts how the GAN-CNN model 

is capable of delivering accurate results in real-world applications and hence can be recommended as a reliable 

tool in image classification. 

5. Discussion 

 

Tomato leaf diseases have caused major challenges for farmers on crop yields and led to food insecurity. Hence 

timely & accurate disease detection is a critical element for a resourceful disease management strategy. The 

traditional methods for the identification of ailments are handicapped by dataset imbalance issues, where rare 

disease identification is the most affected and alters the classification accuracy. Specifically, this study filled the 

gaps using a new deep learning technique that integrates the GANs with Weighted Loss Functions to engineer 

synthetic images of tomato leaf diseases. We show a significant increase in diagnostic precision, especially in rare 

diseases, which have lower representation in the data set. As the learning process for under-served classes was 

highlighted through the employment of weighted loss functions, we were able to have a well-balanced dataset, 

which led to the enhancement of classification accuracy for all disease classes. The application of GAN-established 

synthetic images improved also the diversity of the dataset, which led to more accurate and reliable disease 

detection models. In addition, one significant factor of the success of our method was that it could specifically 

diagnose both common and rare diseases instead of the data set bias which is a great challenge. The result of class 

imbalance compensation using the weighted loss function is a good reflection of its significance for training deep 

learning models for agricultural disease detection applications. Our results showed that we could apply GANs and 

weighted loss to overcome class imbalance in the process of tomato leaf disease detection. We are therefore 

proposing this approach as a solution to this key limitation that will in turn lead to the development of more 

accurate and dependable methods for disease identification in agricultural practice. In addition, the scalability and 

practical usability of our approach can open up ways for the diffusion of our innovation among farmers and other 

agricultural stakeholders, hence, increasing the crop yield, better food quality and sustainable agriculture. 

 

The CNN's hyperparameters were optimised with the use of Genetic Algorithm (GA), which we utilised. It is 

beneficial in that it helps to emphasise the learning process from the class that is under-represented. 

 

5.1 Practical Implications 

The enhanced precision in tomato leaf disease detection leads to more quickly prepared countermeasures, the most 

important factor in fighting diseases that have a significant impact on crop productivity and quality. Phenotyping 

readily can detect and identify diseases which makes it possible for farmers to apply customized management 

interventions like disease-specific therapies or cultural practices which helps in curbing the disease's spread and 

improving plant health. Besides that, the increased pathogens detection accuracy assists develop a yield loss 

reduction in an agricultural economy, thus food security and economic stability. Fast recognition of plants affected 

by the disease and giving a proper solution can be crucial for the farmers to control the damages in yield caused 

by the diseases, protecting their lives and boosting the general quality of productivity. Apart from time and resource 

conservation, the implementation of cutting-edge deep learning algorithms in disease discovery strengthens the 

principles of conservation and sustainability in agriculture. Such as through accurate and targeted interventions 

such as selective pest control methods or integrated pest management systems, farmers could therefore lower the 

impact of disease management methods on the environment. This not only means that farming’s ecological effect 

is lessened but also that the life of the soil is safeguarded and the conservation of biodiversity is supported long-

term. On the one hand, the fact this research emphasizes the innovation of technology can be an incentive for the 

adoption of the latest tools and methodologies in the agricultural sector. This study serves as an example of what 

can be achieved with advanced deep-learning approaches in disease identification, thus encouraging farmers and 

practitioners to heed technology-led solutions for complex problems. This leads to an exchange of knowledge, as 

well as capacity building of farmers taking place in agricultural communities, thus enriching them with 

technologies and tools that can be applied to increase productivity and resilience. 

 

https://doi.org/10.54216/FPA.160210


 

Fusion: Practice and Applications (FPA)                                                        Vol. 16, No. 02. PP. 147-177, 2024 

176 
DOI: https://doi.org/10.54216/FPA.160210  
Received: December 25, 2023 Revised: February 28, 2024 Accepted: June 06, 2024 

 

5.2 Limitations 

Although the application of a GAN-based method and Weighted Loss Function leads to an increase in disease 

detection efficiency of tomato leaves, discernible hurdles still exist. These comprise problems such as generalizing 

data elsewhere which is very hard because of the disparities in geographical and environmental circumstances. 

Alongside this, the data dimensionality, noise, and quality may influence the model's effectiveness. The 

computational complexity of deep learning techniques makes it a practical difficulty when you are applying it to 

the real world, especially in low-resource settings. The research measures employed may be incomplete in 

capturing the real-world effectiveness and transferring research findings to the practical realm could be impeded 

by the fact that they may not integrate well with existing systems and lack users. Ethical issues, such as data 

protection and equality of access, which is also one of the major problems, have to be taken into account. The 

exacting of these restrictions is very fundamental for the concept scheme realization and agriculture productivity 

as a whole. 

6. Conclusion & Future Scope 

The research put forward proves the vital aspect of tackling the risk posed by unbalanced classes in tomato leaf 

disease detection in the agricultural sector. Through an innovative deep learning method consisting of GANs and 

weighted loss functions, we discovered more than 13% higher precision in disease detection compared to the 

existing methods. Our assessment revealed that the employment of this approach is highly effective at diminishing 

the detriment of high imbalance rates, especially in cases of rare diseases, as a result of which machine learning 

models of disease detection are more accurate and reliable. The generation of synthetic images by GAN coupled 

with weighted loss functions has instilled more uniformity in the datasets. As a result, there was more exactness 

in the classification across all respective disease classes. By employing the use of the weight loss functions with 

CNNs, we have concentrated more on the learning process of the under-represented classes thus, enhancing the 

precise detection of rare and commonly occurring maladies. The CNN's hyperparameters were optimised with the 

use of Genetic Algorithm (GA), which we utilised. It is beneficial in that it helps to emphasise the learning process 

from the class that is under-represented. These improvements carry so-called paradigm shifts through early 

intervention and treatment and eventually contribute to higher crop yield and quality in agricultural practices. 

For future endeavours, there are several directions where the examination and development of this area might 

proceed. First of all, the topic of practical procedure together with the issues related to implementation of the 

proposed method must be covered to encourage the farmers and other agricultural stakeholders to apply it. 

Additionally, one of the key objectives in the scope of enhancing the performance of deep learning models and 

fostering computing efficiency should be the development of deep learning architecture and the optimisation of 

technical parameters. Next, more effort should be made to investigate environmental/geographic factors affecting 

disease manifestation and detection accuracy. The input requires that collaboration with agronomists and 

researchers should be extended across different agricultural ranges as such provides valuable information on how 

diseased detection methodologies can be tailored based on the local contexts. However, the ethical implications 

involving deploying high-level technologies in agronomy, including data privacy and fair access, must be taken 

into account and discussion should be continued. Going forward, research focusing on resolving these ethical 

dilemmas is very necessary if we are to embrace the responsible technology adoption process. 
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