

Application of Integral Operator Generated by Touchard Polynomials to Certain Subclasses of Harmonic Functions

Khalifa AlShaqsi Department of Mathematical and Physical Science University of Nizwa, Oman Emails:khalifa.alshaqsi@unizwa.edu.om

Abstract

Let $S_{\mathcal{H}}$ denote the class of functions $f = h + \overline{g}$ which are harmonic univalent and sense-preserving in the unite disk $\mathbb{U} = \{z : |z| < 1\}$ where $h(z) = z + \sum_{k=2}^{\infty} a_k z^k$, $g(z) = \sum_{k=1}^{\infty} b_k z^k$ ($|b_1| < 1$). In this paper we establish connections between various subclasses of harmonic univalent functions by applying certain integral operator involving the Touchard Polynomials.

Keywords: Harmonic univalent; Touchard Polynomials; Integral Operator

1 Introduction and preliminary results

A continuous functions f = u + iv is a complex valued harmonic function in a complex domain \mathbb{C} if both uand v are real harmonic in \mathbb{C} . In any simply connected domain $\mathcal{D} \subset \mathbb{C}$ we can write $f(z) = h + \overline{g}$, where hand g are analytic in \mathcal{D} . We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathcal{D} is that |h'(z)| > |g'(z)| in \mathcal{D} . See Clunie and Sheil-Small (see⁶).

Denote by $S_{\mathcal{H}}$ the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense-preserving in the unit disk $\mathbb{U} = \{z : |z| < 1\}$ for which $f(0) = h(0) = f_z(0) - 1 = 0$. For $f = h + \overline{g} \in S_{\mathcal{H}}$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad g(z) = \sum_{k=1}^{\infty} b_k z^k \qquad |b_1| < 1.$$
 (1)

Note that $S_{\mathcal{H}}$ reduce to class of S of normalized analytic univalent functions if the co-analytic part of its member is zero. Let the subclass $S_{\mathcal{H}}^0$ of $S_{\mathcal{H}}$ defined by

$$\mathcal{S}^0_{\mathcal{H}} = \{ f = h + \overline{g} \in \mathcal{S}_{\mathcal{H}} : g'(0) = b_1 = 0 \}.$$

Analogous to well-known subclasses of the family S, one can define various subclasses of the family S_H . A sense-preserving harmonic mapping $f \in S_H$ is in the class S_H^* if the range $f(\mathbb{U})$ is starlike with respect to the

origin. A function $f \in S^*_{\mathcal{H}}(\alpha)$ is called a harmonic starlike of order α , $(0 \le \alpha < 1)$ mapping in \mathbb{U} . Likewise a function f defined in \mathbb{U} belongs to the class $C_{\mathcal{H}}$ if $f \in S_{\mathcal{H}}$ and if $f(\mathbb{U})$ is a convex domain. A function $f \in C_{\mathcal{H}}(\alpha)$ is called harmonic convex of order α , $(0 \le \alpha < 1)\mathbb{U}$. Analytically, we have

$$\begin{split} f \in \mathcal{S}^*_{\mathcal{H}}(\alpha) & \Leftrightarrow \quad \mathrm{Re} \Biggl\{ \frac{zh'(z) - \overline{zg'(z)}}{h(z) + g(z)} \Biggr\} > \alpha, \qquad z \in \mathbb{U}. \\ f \in \mathcal{C}_{\mathcal{H}}(\alpha) & \Leftrightarrow \quad \mathrm{Re} \Biggl\{ \frac{zh''(z) + h'(z) - \overline{zg''(z) + zg'(z)}}{h'(z) - \overline{g'(z)}} \Biggr\} > \alpha, \qquad z \in \mathbb{U}. \end{split}$$

These classes have been extensively studied by Jahangiri⁷ and.²

For $\alpha = 0$, these classes $S_{\mathcal{H}}^*(\alpha)$ and $C_{\mathcal{H}}(\alpha)$ were denoted by $S_{\mathcal{H}}^*$ and $C_{\mathcal{H}}$ respectively were studied by Avci and Zlotkiewicz,⁸ Silverman⁴ and Silvia.⁵ Further, we let $S_{\mathcal{H}}^{*,0}$, $C_{\mathcal{H}}^0$ and $\mathcal{K}_{\mathcal{H}}^0$ denote the subclasses of $S_{\mathcal{H}}^0$ of harmonic function which are, respectively, starlike, convex and close-to-convex.

Recently, the author³ introduce a series with Touchard polynomials coefficients after the second force as following:

$$F_n(z,m) = z + \sum_{k=2}^{\infty} \frac{m^{k-1}(k-1)^n}{(k-1)!} e^{-m} z^k.$$
(2)

It can be easily by ratio test showed that the above series is convergent ant the radius of convergence is infinity.

For harmonic functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \overline{\sum_{k=1}^{\infty} b_k z^k}$ and $\Omega(z) = z + \sum_{k=2}^{\infty} \psi_k z^k + \overline{\sum_{k=1}^{\infty} \varphi_k z^k}$ the convolution of f and Ω is given by

$$(f*\Omega)(z) = f(z)*\Omega(z) = z + \sum_{k=2}^{\infty} a_k \psi_k z^k + \sum_{k=1}^{\infty} b_k \varphi_k z^k.$$
(3)

Now, we introduce the integral operator $I : S_H \to S_H$ as following:

$$I_n(f) \equiv I_n(m_1, m_2)f(z) = H(z) + \overline{G(z)},$$

where

$$H(z) = h(z) * \int_0^z \frac{F_n(t, m_1)}{t} dt, \ G(z) = g(z) * \int_0^z \frac{F_n(t, m_2)}{t} dt,$$

or equivalently

$$H(z) = z + \sum_{k=2}^{\infty} \frac{m_1^{k-1}(k-1)^n}{k!} e^{-m_1} a_k z^k, \ G(z) = b_1 z + \sum_{k=2}^{\infty} \frac{m_1^{k-1}(k-1)^n}{k!} e^{-m_1} b_k z^k.$$
(4)

In this paper we will apply the integral operator I for the various subclasses of harmonic univalent function.

2 Preliminary Lemmas

To prove our results, we need the following Lemmas:

Lemma 2.1. (1) If $f = h + \overline{g} \in C^0_{\mathcal{H}}$ where h and g are given by (1.1) with $b_1 = 0$, then

$$|a_k| \le \frac{k+1}{2}, \ |b_k| \le \frac{k-1}{2},$$

Lemma 2.2. (²) If $f = h + \overline{g}$ where h and g are given by (1.1). If for some $\alpha(0 \le \alpha < 1)$ and the inequality

$$\sum_{k=2}^{\infty} (k-\alpha)a_k + \sum_{k=1}^{\infty} (k+\alpha)b_k \le 1-\alpha,$$
(5)

is satisfied, then f is harmonic, sense-preserving, univalent function in \mathbb{U} and $f \in \mathcal{S}^*_{\mathcal{H}}(\alpha)$.

Define $\mathcal{TS}^*_{\mathcal{H}}(\alpha) = \mathcal{S}^*_{\mathcal{H}}(\alpha) \cap \mathcal{T}$, where \mathcal{T} consists of the function $f = h + \overline{g}$ in $\mathcal{S}_{\mathcal{H}}$ so that h and g are of the form

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k, \qquad g(z) = \sum_{k=1}^{\infty} |b_k| z^k \qquad |b_1| < 1.$$
(6)

Lemma 2.3. In $(^2)$, it is also show that $f = h + \overline{g}$ where h and g are given by (2.2) is in the class $\mathcal{TS}_{\mathcal{H}}(\alpha)$, if and only if the coefficient conation (2.3) holds. Moreover, if $f \in \mathcal{TS}^*_{\mathcal{H}}(\alpha)$, then

$$|a_n| \le \frac{1-\alpha}{k-\alpha}, \ k \ge 2 \ |b_k| \le \frac{1-\alpha}{k+\alpha}, \ k \ge 1.$$

Lemma 2.4. (²) If $f = h + \overline{g}$ where h and g are given by (1.1). If for some $\alpha(0 \le \alpha < 1)$ and the inequality

$$\sum_{k=2}^{\infty} k(k-\alpha)a_k + \sum_{k=1}^{\infty} k(k+\alpha)b_k \le 1-\alpha,$$
(7)

is satisfied, then f is harmonic, sense-preserving, univalent function in \mathbb{U} and $f \in \mathcal{C}_{\mathcal{H}}(\alpha)$.

Lemma 2.5. In $(^2)$, it is also show that $f = h + \overline{g}$ where h and g are given by (2.2) is in the class $\mathcal{TC}_{\mathcal{H}}(\alpha)$, if and only if the coefficient conation (2.3) holds. Moreover, if $f \in \mathcal{TC}_{\mathcal{H}}(\alpha)$, then

$$|a_k| \le \frac{1-\alpha}{k(k-\alpha)}, \ k \ge 2 \ |b_k| \le \frac{1-\alpha}{k(k+\alpha)}, \ k \ge 1.$$

Lemma 2.6. (1) Let $f = h + \overline{g} \in S^{*,0}_{\mathcal{H}}$ or $C^0_{\mathcal{H}}$, where h and g are given by (1.1), then

$$|a_k| \le \frac{(2k+1)(k+1)}{6}, \ |b_k| \le \frac{(2k-1)(k-1)}{6}, \ k \ge 2.$$

3 Main Results

In our first result, we determine conditions which guarantee that the integral operator I is a harmonic starlike in \mathbb{U} .

Theorem 3.1. If $0 \le \alpha < 1$, $m_1, m_2 > 0$. Also, suppose $f = h + \overline{g} \in S_H$ is given by (1.1). If the inequalities

$$(i)\sum_{k=2}^{\infty} |a_k| + \sum_{k=1}^{\infty} |a_k| \le 1, \ |b_1| < 1,$$
$$(ii)\sum_{i=0}^{n} \binom{n}{k} k^{n-i} (2 - e^{-m_1} - e^{-m_2}) \le 1 - |b_1|$$

are satisfied, then the integral operator I is sense-preserving, harmonic univalent function and maps $S_{\mathcal{H}}$ in to $S_{\mathcal{H}}^*$.

Proof. Note that

$$I(m_1, m_2)f(z) = H(z) + \overline{G(z)},$$

where H(z) and G(z) are given by (1.4). In order to show that I(f) is locally univalent and sense-preserving it suffices to show that |H'(z)| - |G'(z)| > 0 in \mathbb{U} . Using the condition (i), we have

$$\begin{split} |H'(z)| &- |G'(z)| \\ > & 1 - \sum_{k=2}^{\infty} k \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} - \sum_{k=2}^{\infty} k \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} - |b_1| \\ &= & 1 - \sum_{k=0}^{\infty} \frac{e^{-m_1} m_1^{k+1} (k+1)^n}{(k+1)!} - \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k+1} (k+1)^n}{(k+1)!} - |b_1| \\ &= & 1 - \sum_{i=0}^n \binom{n}{k} k^{n-i} \sum_{k=0}^{\infty} e^{-m_1} \frac{m_1^{k+1}}{(k+1)!} - |b_1| - \sum_{i=0}^n \binom{n}{k} k^{n-i} \sum_{k=0}^{\infty} e^{-m_2} \frac{m_2^{k+1}}{(k+1)!} \\ &= & 1 - \sum_{i=0}^n \binom{n}{k} k^{n-i} (1 - e^{-m_1}) - |b_1| - \sum_{i=0}^n \binom{n}{k} k^{n-i} (1 - e^{-m_2}) \\ &= & 1 - |b_1| - \sum_{i=0}^n \binom{n}{k} k^{n-i} (2 - e^{-m_1} - e^{-m_2}) \\ &\geq & 0, from(ii). \end{split}$$

To show that I(f) is univalent in \mathbb{U} , we follow the method of Theorem 1 in.² That is, for $z_1 \neq z_2$ in \mathbb{U} , it suffices to prove that

$$\Re \frac{f(z_2) - f(z_1)}{z_2 - z_1} > \int_0^1 \left(\Re H'(z(t)) - |G'(z(t))| \right) dt.$$
(8)

Since from the given condition (i), we have

$$\Re H'(z(t)) - |G'(z(t))|) > 1 - \sum_{k=2}^{\infty} k \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} - \sum_{k=2}^{\infty} k \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} - |b_1|,$$

it follows from the given hypothesis that the last inequality is positive.

Therefore, from the inequality (3.1) we have

$$\Re \frac{f(z_2) - f(z_1)}{z_2 - z_1} > 0.$$

This proves the univalence of I(f).

In order to prove that $I(f) \in S^*_{\mathcal{H}} \equiv S^*_{\mathcal{H}}(0)$, by using Lemma 2.2 it suffices to show that

$$\sum_{k=2}^{\infty} k \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} |a_k| + |b_1| + \sum_{k=2}^{\infty} k \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} |b_k| \le 1.$$

Since $|a_k| \le 1$, $|b_k| \le 1$, $\forall k \ge 2$, because of given condition (i), we obtain that

$$\begin{split} &\sum_{k=2}^{\infty} k \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} |a_k| + |b_1| + \sum_{k=2}^{\infty} k \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} |b_k| \\ &\leq \sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{(k-1)!} + |b_1| + \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{(k-1)!} \\ &= \sum_{i=0}^n \binom{n}{k} k^{n-i} (1-e^{-m_1}) + |b_1| + \sum_{i=0}^n \binom{n}{k} k^{n-i} (1-e^{-m_2}) \\ &\leq 1, from(ii). \end{split}$$

This completes the proof of Theorem 3.1.

We next find a sufficient condition for which the integral operator I maps $C^0_{\mathcal{H}}$ into $\mathcal{S}^*_{\mathcal{H}}(\alpha)$.

Theorem 3.2. If $0 \le \alpha < 1$, $m_1, m_2 > 0$ and the inequality

$$\sum_{i=0}^{n} {n \choose k} k^{n-i} \Big[m_1 + m_2 + (2-\alpha)(1-e^{-m_1}) + \alpha(1-e^{-m_2}) - \frac{\alpha}{m_1}(1-e^{-m_1} - m_1e^{-m_1}) \\ - \frac{\alpha}{m_2}(1-e^{-m_2} - m_2e^{-m_2}) \Big] \le 2(1-\alpha)$$

is satisfied, then $I(\mathcal{C}^0_{\mathcal{H}}) \subset \mathcal{S}^*_{\mathcal{H}}(\alpha)$.

Proof. Let $f = h + \overline{g} \in C^0_{\mathcal{H}}$ where h and g are given (1.1) with $b_1 = 0$. We need to prove that $I(f) = H + \overline{G} \in S^*_{\mathcal{H}}(\alpha)$ where h and G are given by (1.4) with $b_1 = 0$ are analytic function in \mathbb{U} . In view of Lemma 2.2, it is enough to show that

$$\sum_{k=2}^{\infty} (k-\alpha) \left| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \right| + \sum_{k=2}^{\infty} (k+\alpha) \left| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \right| \le 1 - \alpha.$$
(9)

Applying Lemma 2.1, we have

$$\begin{split} &\sum_{k=2}^{\infty} (k-\alpha) \left| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \right| + \sum_{k=2}^{\infty} (k+\alpha) \left| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \right| \\ &\leq \left. \frac{1}{2} \left[\sum_{k=2}^{\infty} (k-\alpha) (k+1) \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} + \sum_{k=2}^{\infty} (k+\alpha) (k-1) \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] \right] \\ &= \left. \frac{1}{2} \left[\sum_{k=2}^{\infty} \{k(k-1) + k(2-\alpha) - \alpha\} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} \right] \\ &+ \sum_{k=2}^{\infty} \{k(k-1) + k\alpha - \alpha\} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] \\ &= \left. \frac{1}{2} \left[\sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{(k-2)!} + (2-\alpha) \sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{(k-1)!} - \alpha \sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} \right] \\ &+ \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{(k-2)!} + \alpha \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{(k-1)!} - \alpha \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] \\ &= \left. \frac{1}{2} \sum_{i=0}^n \binom{n}{k} k^{n-i} \left[m_1 + m_2 + (2-\alpha) (1 - e^{-m_1}) + \alpha (1 - e^{-m_2}) \\ &- \frac{\alpha}{m_1} (1 - e^{-m_1} - m_1 e^{-m_1}) - \frac{\alpha}{m_2} (1 - e^{-m_2} - m_2 e^{-m_2}) \right]. \end{split}$$

The last expression is bounded above by $1 - \alpha$ by the given hypothesis. Thus the proof of Theorem 3.2 is established.

Theorem 3.3. If $0 \le \alpha < 1$, $m_1, m_2 > 0$ and if the inequality

$$\sum_{i=0}^{n} {n \choose k} k^{n-i} \Big[2m_1^2 + m(9 - 2\alpha)m_1 + (6 - 5\alpha)(1 - e^{-m_1}) - \frac{\alpha}{m_1}(1 - e^{-m_1} - m_1e^{-m_1}) \\ 2m_2^2 + m(2\alpha + 3)m_2 - \alpha(1 - e^{-m_1}) - \frac{\alpha}{m_2}(1 - e^{-m_2} - m_2e^{-m_2}) \Big] \le 6(1 - \alpha)$$

is satisfied, then $I(\mathcal{S}^{*,0}_{\mathcal{H}}) \subset \mathcal{S}^*_{\mathcal{H}}(\alpha)$ and $I(\mathcal{C}^0_{\mathcal{H}}) \subset \mathcal{S}^*_{\mathcal{H}}(\alpha)$.

Proof. Let $f = h + \overline{g} \in S_{\mathcal{H}}^{*,0}$ where h and g are given (1.1) with $b_1 = 0$. We need to prove that $I(f) = H + \overline{G} \in S_{\mathcal{H}}^*(\alpha)$ where h and G are given by (1.4) with $b_1 = 0$ are analytic function in \mathbb{U} . In view of Lemma 2.2, it is enough to show that

$$\sum_{k=2}^{\infty} (k-\alpha) \left| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \right| + \sum_{k=2}^{\infty} (k+\alpha) \left| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \right| \le 1 - \alpha.$$
(10)

Applying Lemma 2.4, we have

$$\begin{split} &\sum_{k=2}^{\infty} (k-\alpha) \left| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \right| + \sum_{k=2}^{\infty} (k+\alpha) \left| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \right| \\ &\leq \quad \frac{1}{6} \left[\sum_{k=2}^{\infty} (k-\alpha) (2k+1) (k+1) \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} + \sum_{k=2}^{\infty} (k+\alpha) (2k-1) (k-1) \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] \\ &= \quad \frac{1}{6} \left[\sum_{k=2}^{\infty} \{2k(k-1) (k-2) + (9-2\alpha) k(k-1) + (6-5\alpha) k - \alpha\} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} \right] \\ &+ \sum_{k=2}^{\infty} \{2k(k-1) (k-2) + (2\alpha+3) k(k-1) - k\alpha + \alpha\} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] \\ &= \quad \frac{1}{6} \sum_{i=0}^n \binom{n}{k} k^{n-i} \left[e^{-m_1} \left\{ 2 \sum_{k=2}^{\infty} \frac{m_1^{k-1}}{(k-3)!} + (9-2\alpha) \sum_{k=2}^{\infty} \frac{m_1^{k-1}}{(k-2)!} + (6-5\alpha) \sum_{k=2}^{\infty} \frac{m_1^{k-1}}{(k-1)!} - \alpha \sum_{k=2}^{\infty} \frac{m_1^{k-1}}{k!} \right\} \\ &+ e^{-m_2} \left\{ 2 \sum_{k=2}^{\infty} \frac{m_2^{k-1}}{(k-3)!} + (2\alpha+3) \sum_{k=2}^{\infty} \frac{m_2^{k-1}}{(k-2)!} - \alpha \sum_{k=2}^{\infty} \frac{m_2^{k-1}}{(k-1)!} + \alpha \sum_{k=2}^{\infty} \frac{m_2^{k-1}}{k!} \right\} \right] \\ &= \quad \frac{1}{6} \sum_{i=0}^n \binom{n}{k} k^{n-i} \left[\left\{ 2m_1^2 + (9-2\alpha)m_1 + (6-5\alpha)(1-e^{-m_1}) - \frac{\alpha}{m_1}(1-e^{-m_1}-m_1e^{-m_1}) \right\} \\ &- \left\{ 2m_2^2 + (2\alpha+3)m_2 - \alpha(1-e^{-m_1}) + \frac{\alpha}{m_2}(1-e^{-m_2}-m_2e^{-m_2}) \right\} \right] \end{aligned}$$

by the given hypothesis.

This completes the proof of Theorem 3.3.

Theorem 3.4. If $0 \le \alpha < 1$, $m_1, m_2 > 0$, then $I(\mathcal{TS}^*_{\mathcal{H}}(\alpha)) \subset \mathcal{TS}^*_{\mathcal{H}}(\alpha)$, if and only if the inequality

$$\sum_{i=0}^{n} \binom{n}{k} k^{n-i} \left[\frac{1}{m_1} (1 - e^{-m_1} - m_1 e^{-m_1}) + \frac{1}{m_2} (1 - e^{-m_2} - m_2 e^{-m_2}) \right] \le 1 - \frac{1+\alpha}{1-\alpha} |b_1|, \quad (11)$$

is satisfied.

Proof. Let $f = h + \overline{g} \in \mathcal{TS}^*_{\mathcal{H}}(\alpha)$, where h and g are given by (2.2), we need to prove that the integral operator

$$I(f(z)) = z - \sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} |a_k| z^k + |b_1| \overline{z} + \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} |b_k| \overline{z^k}$$

is in $\mathcal{TS}^*_{\mathcal{H}}(\alpha)$, if and only if,

$$\sum_{k=2}^{\infty} (k-\alpha) \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} |a_k| + (1+\alpha) |b_1| + \sum_{k=2}^{\infty} (k+\alpha) \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} |b_k| \le 1-\alpha.$$

By using Lemma 2.3, we obtain

$$\begin{split} &\sum_{k=2}^{\infty} (k-\alpha) \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} |a_k| + (1+\alpha) |b_1| + \sum_{k=2}^{\infty} (k+\alpha) \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} |b_k| \\ &\leq (1-\alpha) \left[\sum_{k=2}^{\infty} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} + \sum_{k=2}^{\infty} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} \right] + (1+\alpha) |b_1| \\ &= (1-\alpha) \sum_{i=0}^n \binom{n}{k} k^{n-i} \left[\frac{1}{m_1} (1-e^{-m_1} - m_1 e^{-m_1}) + \frac{1}{m_2} (1-e^{-m_2} - m_2 e^{-m_2}) \right] + (1+\alpha) |b_1| \\ &\leq 1-\alpha, \end{split}$$

by the given condition and this completes the proof of the theorem.

We next explore a sufficient condition which ensure that I maps $C^0_{\mathcal{H}}$ into $C_{\mathcal{H}}(\alpha)$. **Theorem 3.5.** If $0 \le \alpha < 1$, $m_1, m_2 > 0$, then $I(C^0_{\mathcal{H}}) \subset C_{\mathcal{H}}(\alpha)$, if the inequality

$$\sum_{i=0}^{n} \binom{n}{k} k^{n-i} \left[m_1^2 + m_2^2 + (4-\alpha)m_1 + (2-\alpha)m_2 \right] \le 2(1-\alpha).$$

is satisfied.

Proof. Let $f = h + \overline{g} \in C^0_{\mathcal{H}}$, where h and g are given by (2.2)with $b_1 = 0$, we need to prove that the integral operator $I(f(z)) = H + \overline{G} \in C_{\mathcal{H}}(\alpha)$, where H and G are given by (1.4) with $b_1 = 0$ are analytic function in \mathbb{U} . In view of Lemma 2.4, it is enough to show that

$$\sum_{k=2}^{\infty} k(k-\alpha) \left| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \right| + \sum_{k=2}^{\infty} k(k+\alpha) \left| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \right| \le 1 - \alpha.$$

By applying Lemma 2.1, we have

$$\begin{split} &\sum_{k=2}^{\infty} k(k-\alpha) \Big| \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{k!} a_k \Big| + \sum_{k=2}^{\infty} k(k+\alpha) \Big| \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{k!} b_k \Big| \\ &\leq \left| \frac{1}{2} \left[\sum_{k=2}^{\infty} (k-\alpha) (k+1) \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{(k-1)!} + \sum_{k=2}^{\infty} (k+\alpha) \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{(k-2)!} \right] \right] \\ &= \left| \frac{1}{2} \left[\sum_{k=2}^{\infty} \left\{ (k-1) (k-2) + (4-\alpha) (k-1) + 2(1-\alpha) \right\} \frac{e^{-m_1} m_1^{k-1} (k-1)^n}{(k-1)!} \right] \\ &+ \sum_{k=2}^{\infty} \left\{ (k-2) + (2+\alpha) \right\} \frac{e^{-m_2} m_2^{k-1} (k-1)^n}{(k-2)!} \right] \\ &= \left| \frac{1}{2} \sum_{i=0}^n \binom{n}{k} k^{n-i} \left[m_1^2 + (4-\alpha) m_1 + 2(1-\alpha) (1-e^{-m_1}) + m_2^2 + (2-\alpha) m_2 \right] \\ &\leq 1-\alpha, \end{split}$$

by the given hypothesis. Thus the proof of Theorem 3.5 is established.

The proof of the following theorems ar similar to previous theorems so we state only the results.

Theorem 3.6. If $0 \le \alpha < 1$, $m_1, m_2 > 0$, then $I(\mathcal{TS}^*_{\mathcal{H}}(\alpha)) \subset \mathcal{TC}_{\mathcal{H}}(\alpha)$, if and only if the inequality

$$\sum_{i=0}^{n} \binom{n}{k} k^{n-i} \left[e^{-m_1} + e^{-m_2} \right] \le 1 + \frac{1+\alpha}{1-\alpha} |b_1|$$

is satisfied.

Theorem 3.7. If $0 \le \alpha < 1$, $m_1, m_2 > 0$, then $I(\mathcal{TC}_{\mathcal{H}}(\alpha)) \subset \mathcal{TC}_{\mathcal{H}}(\alpha)$, if and only if the inequality (3.4) is satisfied.

Theorem 3.8. If $0 \le \alpha < 1$, $m_1, m_2 > 0$ and if the inequality

$$\sum_{i=0}^{n} \binom{n}{k} k^{n-i} e^{m_1} \Big[2(m_1^3 + m_2^3) + (15 - 2\alpha)m_1^2 + 3(8 - 3\alpha)m_1 + (2\alpha + 9)m_2^2 + 3(2 + \alpha)m_2 \Big] \le 6(1 - \alpha),$$

is satisfied, then $I(\mathcal{S}_{\mathcal{H}}^{*,0}) \subset \mathcal{C}_{\mathcal{H}}(\alpha)$ and $I(\mathcal{C}_{\mathcal{H}}^{0}) \subset \mathcal{K}_{\mathcal{H}}(\alpha)$.

References

- [1] Duren P. Harmonic Mmapping in the plane Cambridge (Cambridge: Cambridge University Press)
- [2] Jahangiri J. M., Harmonic functions starlike in the unit disk J. Math. Anal. Appl. 235 pp. 470-477, 1999.
- [3] AlShaqsi K., On inclusion results of certain subclasses of analytic functions associated with generating function *AIP Conference Proceedings* pp. 18–30 **1** 16, 2017.
- [4] Silverman H., Harmonic univalent functions with negative coefficients *Proc. Amer. Math. Soc.* pp. 283–289, 51, 1998.
- [5] Silverman H. and Silvia E. M., Subclasses of harmonic univalent functions *New Zeal. J. Math.* 275–284, 28, 1999.
- [6] Clunie J. and Shell-Small T. Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math. 9 pp. 325, 1984.
- [7] Jahangiri J. M. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients Ann. Univ. Mariae Curie – Sklodowska Sect A., 57–66, A 52, 1998.
- [8] Avci Y and Zlotkiewicz E., On harmonic univalent mappings Ann. Uni ". Mariae Curie- Sklodowska Sect pp. 17 A 44, 1990.
- [9] Ponnusamy S. and Kaliraj A. S. On harmonic close-to-convex functions Comp. Methods and Function Theory, pp. 669–685, 12 2, 2012.