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Abstract

Let SH denote the class of functions f = h + g which are harmonic univalent and sense-preserving in the

unite disk U = {z : |z| < 1} where h(z) = z +
∑∞

k=2 akz
k, g(z) =

∞∑
k=1

bkz
k (|b1| < 1). In this paper we

establish connections between various subclasses of harmonic univalent functions by applying certain integral
operator involving the Touchard Polynomials.
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1 Introduction and preliminary results

A continuous functions f = u + iv is a complex valued harmonic function in a complex domain C if both u
and v are real harmonic in C. In any simply connected domain D ⊂ C we can write f(z) = h + g, where h
and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)| in D. See Clunie and
Sheil-Small (see6).

Denote by SH the class of functions f = h + g that are harmonic univalent and sense-preserving in the unit
disk U = {z : |z| < 1} for which f(0) = h(0) = fz(0) − 1 = 0. For f = h + g ∈ SH we may express the
analytic functions h and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k |b1| < 1. (1)

Note that SH reduce to class of S of normalized analytic univalent functions if the co-analytic part of its
member is zero. Let the subclass S0

H of SH defined by

S0
H = {f = h+ g ∈ SH : g′(0) = b1 = 0}.

Analogous to well-known subclasses of the family S, one can define various subclasses of the family SH. A
sense-preserving harmonic mapping f ∈ SH is in the class S∗

H if the range f(U) is starlike with respect to the
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origin. A function f ∈ S∗
H(α) is called a harmonic starlike of order α, (0 ≤ α < 1) mapping in U. Likewise

a function f defined in U belongs to the class CH if f ∈ SH and if f(U) is a convex domain. A function
f ∈ CH(α) is called harmonic convex of order α, (0 ≤ α < 1)U. Analytically, we have

f ∈ S∗
H(α) ⇔ Re

{
zh′(z)− zg′(z)

h(z) + g(z)

}
> α, z ∈ U.

f ∈ CH(α) ⇔ Re

{
zh′′(z) + h′(z)− zg′′(z) + zg′(z)

h′(z)− g′(z)

}
> α, z ∈ U.

These classes have been extensively studied by Jahangiri7 and.2

For α = 0, these classes S∗
H(α) and CH(α) were denoted by S∗

H and CH respectively were studied by Avci
and Zlotkiewicz,8 Silverman4 and Silvia.5 Further, we let S∗,0

H , C0
H and K0

H denote the subclasses of S0
H of

harmonic function which are, respectively, starlike, convex and close-to-convex.

Recently, the author3 introduce a series with Touchard polynomials coefficients after the second force as fol-
lowing:

Fn(z,m) = z +

∞∑
k=2

mk−1(k − 1)n

(k − 1)!
e−mzk. (2)

It can be easily by ratio test showed that the above series is convergent ant the radius of convergence is infinity.

For harmonic functions f(z) = z+
∞∑
k=2

akz
k+

∞∑
k=1

bkzkand Ω(z) = z+
∞∑
k=2

ψkz
k+

∞∑
k=1

φkzk the convolution

of f and Ω is given by

(f ∗ Ω)(z) = f(z) ∗ Ω(z) = z +

∞∑
k=2

akψkz
k +

∞∑
k=1

bkφkzk. (3)

Now, we introduce the integral operator I : SH → SH as following:

In(f) ≡ In(m1,m2)f(z) = H(z) +G(z),

where

H(z) = h(z) ∗
∫ z

0

Fn(t,m1)

t
dt, G(z) = g(z) ∗

∫ z

0

Fn(t,m2)

t
dt,

or equivalently

H(z) = z +

∞∑
k=2

mk−1
1 (k − 1)n

k!
e−m1akz

k, G(z) = b1z +

∞∑
k=2

mk−1
1 (k − 1)n

k!
e−m1bkz

k. (4)

In this paper we will apply the integral operator I for the various subclasses of harmonic univalent function.
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2 Preliminary Lemmas

To prove our results, we need the following Lemmas:

Lemma 2.1. (1) If f = h+ g ∈ C0
H where h and g are given by (1.1) with b1 = 0, then

|ak| ≤
k + 1

2
, |bk| ≤

k − 1

2
,

Lemma 2.2. (2) If f = h+ g where h and g are given by (1.1). If for some α(0 ≤ α < 1) and the inequality

∞∑
k=2

(k − α)ak +

∞∑
k=1

(k + α)bk ≤ 1− α, (5)

is satisfied, then f is harmonic, sense-preserving, univalent function in U and f ∈ S∗
H(α).

Define T S∗
H(α) = S∗

H(α) ∩ T , where T consists of the function f = h + g in SH so that h and g are of the
form

h(z) = z −
∞∑
k=2

|ak|zk, g(z) =

∞∑
k=1

|bk|zk |b1| < 1. (6)

Lemma 2.3. In (2), it is also show that f = h+ g where h and g are given by (2.2) is in the class T SH(α), if
and only if the coefficient conation (2.3) holds. Moreover, if f ∈ T S∗

H(α), then

|an| ≤
1− α

k − α
, k ≥ 2 |bk| ≤

1− α

k + α
, k ≥ 1.

Lemma 2.4. (2) If f = h+ g where h and g are given by (1.1). If for some α(0 ≤ α < 1) and the inequality

∞∑
k=2

k(k − α)ak +

∞∑
k=1

k(k + α)bk ≤ 1− α, (7)

is satisfied, then f is harmonic, sense-preserving, univalent function in U and f ∈ CH(α).

Lemma 2.5. In (2), it is also show that f = h+ g where h and g are given by (2.2) is in the class T CH(α), if
and only if the coefficient conation (2.3) holds. Moreover, if f ∈ T CH(α), then

|ak| ≤
1− α

k(k − α)
, k ≥ 2 |bk| ≤

1− α

k(k + α)
, k ≥ 1.

Lemma 2.6. (1) Let f = h+ g ∈ S∗,0
H or C0

H, where h and g are given by (1.1), then

|ak| ≤
(2k + 1)(k + 1)

6
, |bk| ≤

(2k − 1)(k − 1)

6
, k ≥ 2.

3 Main Results

In our first result, we determine conditions which guarantee that the integral operator I is a harmonic starlike
in U.

Theorem 3.1. If 0 ≤ α < 1, m1,m2 > 0. Also, suppose f = h+ g ∈ SH is given by (1.1). If the inequalities

(i)

∞∑
k=2

|ak|+
∞∑
k=1

|ak| ≤ 1, |b1| < 1,

(ii)

n∑
i=0

(
n

k

)
kn−i(2− e−m1 − e−m2) ≤ 1− |b1|

are satisfied, then the integral operator I is sense-preserving, harmonic univalent function and maps SH in to
S∗
H.
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Proof. Note that

I(m1,m2)f(z) = H(z) +G(z),

where H(z) and G(z) are given by (1.4). In order to show that I(f) is locally univalent and sense-preserving
it suffices to show that |H ′(z)| − |G′(z)| > 0 in U. Using the condition (i), we have

|H ′(z)| − |G′(z)|

> 1−
∞∑
k=2

k
e−m1mk−1

1 (k − 1)n

k!
−

∞∑
k=2

k
e−m2mk−1

2 (k − 1)n

k!
− |b1|

= 1−
∞∑
k=0

e−m1mk+1
1 (k + 1)n

(k + 1)!
−

∞∑
k=2

e−m2mk+1
2 (k + 1)n

(k + 1)!
− |b1|

= 1−
n∑

i=0

(
n

k

)
kn−i

∞∑
k=0

e−m1
mk+1

1

(k + 1)!
− |b1| −

n∑
i=0

(
n

k

)
kn−i

∞∑
k=0

e−m2
mk+1

2

(k + 1)!

= 1−
n∑

i=0

(
n

k

)
kn−i(1− e−m1)− |b1| −

n∑
i=0

(
n

k

)
kn−i(1− e−m2)

= 1− |b1| −
n∑

i=0

(
n

k

)
kn−i(2− e−m1 − e−m2)

≥ 0, from(ii).

To show that I(f) is univalent in U, we follow the method of Theorem 1 in.2 That is, for z1 ̸= z2 in U, it
suffices to prove that

ℜf(z2)− f(z1)

z2 − z1
>

∫ 1

0

(ℜH ′(z(t))− |G′(z(t))|)dt. (8)

Since from the given condition (i), we have

ℜH ′(z(t))− |G′(z(t))|) > 1−
∞∑
k=2

k
e−m1mk−1

1 (k − 1)n

k!
−

∞∑
k=2

k
e−m2mk−1

2 (k − 1)n

k!
− |b1|,

it follows from the given hypothesis that the last inequality is positive.

Therefore, from the inequality (3.1) we have

ℜf(z2)− f(z1)

z2 − z1
> 0.

This proves the univalence of I(f).

In order to prove that I(f) ∈ S∗
H ≡ S∗

H(0), by using Lemma 2.2 it suffices to show that
∞∑
k=2

k
e−m1mk−1

1 (k − 1)n

k!
|ak|+ |b1|+

∞∑
k=2

k
e−m2mk−1

2 (k − 1)n

k!
|bk| ≤ 1.

Since |ak| ≤ 1, |bk| ≤ 1, ∀ k ≥ 2, because of given condition (i), we obtain that

∞∑
k=2

k
e−m1mk−1

1 (k − 1)n

k!
|ak|+ |b1|+

∞∑
k=2

k
e−m2mk−1

2 (k − 1)n

k!
|bk|

≤
∞∑
k=2

e−m1mk−1
1 (k − 1)n

(k − 1)!
+ |b1|+

∞∑
k=2

e−m2mk−1
2 (k − 1)n

(k − 1)!

=

n∑
i=0

(
n

k

)
kn−i(1− e−m1) + |b1|+

n∑
i=0

(
n

k

)
kn−i(1− e−m2)

≤ 1, from(ii).
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This completes the proof of Theorem 3.1.

We next find a sufficient condition for which the integral operator I maps C0
H into S∗

H(α).

Theorem 3.2. If 0 ≤ α < 1, m1,m2 > 0 and the inequality

n∑
i=0

(
n

k

)
kn−i

[
m1 +m2 + (2− α)(1− e−m1) + α(1− e−m2)− α

m1
(1− e−m1 −m1e

−m1)

− α

m2
(1− e−m2 −m2e

−m2)
]
≤ 2(1− α)

is satisfied, then I(C0
H) ⊂ S∗

H(α).

Proof. Let f = h+g ∈ C0
H where h and g are given (1.1) with b1 = 0. We need to prove that I(f) = H+G ∈

S∗
H(α) where h and G are given by (1.4) with b1 = 0 are analytic function in U. In view of Lemma 2.2, it is

enough to show that

∞∑
k=2

(k − α)

∣∣∣∣∣e−m1mk−1
1 (k − 1)n

k!
ak

∣∣∣∣∣+
∞∑
k=2

(k + α)

∣∣∣∣∣e−m2mk−1
2 (k − 1)n

k!
bk

∣∣∣∣∣ ≤ 1− α. (9)

Applying Lemma 2.1, we have

∞∑
k=2

(k − α)

∣∣∣∣∣e−m1mk−1
1 (k − 1)n

k!
ak

∣∣∣∣∣+
∞∑
k=2

(k + α)

∣∣∣∣∣e−m2mk−1
2 (k − 1)n

k!
bk

∣∣∣∣∣
≤ 1

2

[ ∞∑
k=2

(k − α)(k + 1)
e−m1mk−1

1 (k − 1)n

k!
+

∞∑
k=2

(k + α)(k − 1)
e−m2mk−1

2 (k − 1)n

k!

]

=
1

2

[ ∞∑
k=2

{k(k − 1) + k(2− α)− α}e
−m1mk−1

1 (k − 1)n

k!

+

∞∑
k=2

{k(k − 1) + kα− α}e
−m2mk−1

2 (k − 1)n

k!

]

=
1

2

[ ∞∑
k=2

e−m1mk−1
1 (k − 1)n

(k − 2)!
+ (2− α)

∞∑
k=2

e−m1mk−1
1 (k − 1)n

(k − 1)!
− α

∞∑
k=2

e−m1mk−1
1 (k − 1)n

k!

+

∞∑
k=2

e−m2mk−1
2 (k − 1)n

(k − 2)!
+ α

∞∑
k=2

e−m2mk−1
2 (k − 1)n

(k − 1)!
− α

∞∑
k=2

e−m2mk−1
2 (k − 1)n

k!

]

=
1

2

n∑
i=0

(
n

k

)
kn−i

[
m1 +m2 + (2− α)(1− e−m1) + α(1− e−m2)

− α

m1
(1− e−m1 −m1e

−m1)− α

m2
(1− e−m2 −m2e

−m2)
]
.

The last expression is bounded above by 1− α by the given hypothesis.
Thus the proof of Theorem 3.2 is established.

Theorem 3.3. If 0 ≤ α < 1, m1,m2 > 0 and if the inequality

n∑
i=0

(
n

k

)
kn−i

[
2m2

1 +m(9− 2α)m1 + (6− 5α)(1− e−m1)− α

m1
(1− e−m1 −m1e

−m1)

2m2
2 +m(2α+ 3)m2 − α(1− e−m1)− α

m2
(1− e−m2 −m2e

−m2)
]
≤ 6(1− α)

is satisfied, then I(S∗,0
H ) ⊂ S∗

H(α) and I(C0
H) ⊂ S∗

H(α).
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Proof. Let f = h + g ∈ S∗,0
H where h and g are given (1.1) with b1 = 0. We need to prove that I(f) =

H +G ∈ S∗
H(α) where h and G are given by (1.4) with b1 = 0 are analytic function in U. In view of Lemma

2.2, it is enough to show that

∞∑
k=2

(k − α)

∣∣∣∣∣e−m1mk−1
1 (k − 1)n

k!
ak

∣∣∣∣∣+
∞∑
k=2

(k + α)

∣∣∣∣∣e−m2mk−1
2 (k − 1)n

k!
bk

∣∣∣∣∣ ≤ 1− α. (10)

Applying Lemma 2.4, we have

∞∑
k=2

(k − α)

∣∣∣∣∣e−m1mk−1
1 (k − 1)n

k!
ak

∣∣∣∣∣+
∞∑
k=2

(k + α)

∣∣∣∣∣e−m2mk−1
2 (k − 1)n

k!
bk

∣∣∣∣∣
≤ 1

6

[ ∞∑
k=2

(k − α)(2k + 1)(k + 1)
e−m1mk−1

1 (k − 1)n

k!
+

∞∑
k=2

(k + α)(2k − 1)(k − 1)
e−m2mk−1

2 (k − 1)n

k!

]

=
1

6

[ ∞∑
k=2

{2k(k − 1)(k − 2) + (9− 2α)k(k − 1) + (6− 5α)k − α}e
−m1mk−1

1 (k − 1)n

k!

+

∞∑
k=2

{2k(k − 1)(k − 2) + (2α+ 3)k(k − 1)− kα+ α}e
−m2mk−1

2 (k − 1)n

k!

]

=
1

6

n∑
i=0

(
n

k

)
kn−i

[
e−m1

{
2

∞∑
k=2

mk−1
1

(k − 3)!
+ (9− 2α)

∞∑
k=2

mk−1
1

(k − 2)!
+ (6− 5α)

∞∑
k=2

mk−1
1

(k − 1)!
− α

∞∑
k=2

mk−1
1

k!

}

+e−m2

{
2

∞∑
k=2

mk−1
2

(k − 3)!
+ (2α+ 3)

∞∑
k=2

mk−1
2

(k − 2)!
− α

∞∑
k=2

mk−1
2

(k − 1)!
+ α

∞∑
k=2

mk−1
2

k!

}]

=
1

6

n∑
i=0

(
n

k

)
kn−i

[{
2m2

1 + (9− 2α)m1 + (6− 5α)(1− e−m1)− α

m1
(1− e−m1 −m1e

−m1)
}

−
{
2m2

2 + (2α+ 3)m2 − α(1− e−m1) +
α

m2
(1− e−m2 −m2e

−m2)
}]

≤ 1− α,

by the given hypothesis.
This completes the proof of Theorem 3.3.

Theorem 3.4. If 0 ≤ α < 1, m1,m2 > 0, then I(T S∗
H(α)) ⊂ T S∗

H(α), if and only if the inequality

n∑
i=0

(
n

k

)
kn−i

[ 1

m1
(1− e−m1 −m1e

−m1) +
1

m2
(1− e−m2 −m2e

−m2)
]
≤ 1− 1 + α

1− α
|b1|, (11)

is satisfied.

Proof. Let f = h+g ∈ T S∗
H(α), where h and g are given by (2.2), we need to prove that the integral operator

I(f(z)) = z −
∞∑
k=2

e−m1mk−1
1 (k − 1)n

k!
|ak|zk + |b1|z +

∞∑
k=2

e−m2mk−1
2 (k − 1)n

k!
|bk|zk

is in T S∗
H(α), if and only if,

∞∑
k=2

(k − α)
e−m1mk−1

1 (k − 1)n

k!
|ak|+ (1 + α)|b1|+

∞∑
k=2

(k + α)
e−m2mk−1

2 (k − 1)n

k!
|bk| ≤ 1− α.
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By using Lemma 2.3, we obtain

∞∑
k=2

(k − α)
e−m1mk−1

1 (k − 1)n

k!
|ak|+ (1 + α)|b1|+

∞∑
k=2

(k + α)
e−m2mk−1

2 (k − 1)n

k!
|bk|

≤ (1− α)

[ ∞∑
k=2

e−m1mk−1
1 (k − 1)n

k!
+

∞∑
k=2

e−m2mk−1
2 (k − 1)n

k!

]
+ (1 + α)|b1|

= (1− α)

n∑
i=0

(
n

k

)
kn−i

[ 1

m1
(1− e−m1 −m1e

−m1) +
1

m2
(1− e−m2 −m2e

−m2)
]
+ (1 + α)|b1|

≤ 1− α,

by the given condition and this completes the proof of the theorem.

We next explore a sufficient condition which ensure that I maps C0
H into CH(α).

Theorem 3.5. If 0 ≤ α < 1, m1,m2 > 0, then I(C0
H) ⊂ CH(α), if the inequality

n∑
i=0

(
n

k

)
kn−i

[
m2

1 +m2
2 + (4− α)m1 + (2− α)m2

]
≤ 2(1− α).

is satisfied.

Proof. Let f = h + g ∈ C0
H, where h and g are given by (2.2)with b1 = 0, we need to prove that the integral

operator I(f(z)) = H +G ∈ CH(α), where H and G are given by (1.4) with b1 = 0 are analytic function in
U. In view of Lemma 2.4, it is enough to show that

∞∑
k=2

k(k − α)
∣∣∣e−m1mk−1

1 (k − 1)n

k!
ak

∣∣∣+ ∞∑
k=2

k(k + α)
∣∣∣e−m2mk−1

2 (k − 1)n

k!
bk

∣∣∣ ≤ 1− α.

By applying Lemma 2.1, we have

∞∑
k=2

k(k − α)
∣∣∣e−m1mk−1

1 (k − 1)n

k!
ak

∣∣∣+ ∞∑
k=2

k(k + α)
∣∣∣e−m2mk−1

2 (k − 1)n

k!
bk

∣∣∣
≤ 1

2

[ ∞∑
k=2

(k − α)(k + 1)
e−m1mk−1

1 (k − 1)n

(k − 1)!
+

∞∑
k=2

(k + α)
e−m2mk−1

2 (k − 1)n

(k − 2)!

]

=
1

2

[ ∞∑
k=2

{
(k − 1)(k − 2) + (4− α)(k − 1) + 2(1− α)

}e−m1mk−1
1 (k − 1)n

(k − 1)!

+

∞∑
k=2

{
(k − 2) + (2 + α)

}e−m2mk−1
2 (k − 1)n

(k − 2)!

]

=
1

2

n∑
i=0

(
n

k

)
kn−i

[
m2

1 + (4− α)m1 + 2(1− α)(1− e−m1) +m2
2 + (2− α)m2

]
≤ 1− α,

by the given hypothesis. Thus the proof of Theorem 3.5 is established.

The proof of the following theorems ar similar to previous theorems so we state only the results.

Theorem 3.6. If 0 ≤ α < 1, m1,m2 > 0, then I(T S∗
H(α)) ⊂ T CH(α), if and only if the inequality

n∑
i=0

(
n

k

)
kn−i

[
e−m1 + e−m2

]
≤ 1 +

1 + α

1− α
|b1|,

is satisfied.
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Theorem 3.7. If 0 ≤ α < 1, m1,m2 > 0, then I(T CH(α)) ⊂ T CH(α), if and only if the inequality (3.4) is
satisfied.

Theorem 3.8. If 0 ≤ α < 1, m1,m2 > 0 and if the inequality

n∑
i=0

(
n

k

)
kn−iem1

[
2(m3

1 +m3
2) + (15− 2α)m2

1 + 3(8− 3α)m1

+(2α+ 9)m2
2 + 3(2 + α)m2

]
≤ 6(1− α),

is satisfied, then I(S∗,0
H ) ⊂ CH(α) and I(C0

H) ⊂ KH(α).
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