Metaheuristic Optimization Review

Journal DOI

https://doi.org/10.54216/MOR

Submit Your Paper

3066-280XISSN (Online)

Volume 1 , Issue 1 , PP: 55-65, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights

Ahmed Mohamed Zaki 1 * , Khaled Sh. Gaber 2 , Faris H. Rizk 3 , Mahmoud Elshabrawy Mohamed 4

  • 1 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (Azaki@jcsis.org)
  • 2 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (khsherif@jcsis.org)
  • 3 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (faris.rizk@jcsis.org)
  • 4 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (mshabrawy@jcsis.org)
  • Doi: https://doi.org/10.54216/MOR.010105

    Received: August 28, 2023 Revised: December 10, 2023 Accepted: January 11, 2024
    Abstract

    The current review summarizes the latest trends in malaria literature, emphasizing transmission ecology, new diagnostics and treatment. It stresses the additional focus on the transmission, according to the spatiotemporal models and predictive analytics, which help identify periods and the locations with the most significant risk, noting that these processes should consider the environmental factors. The change in the diagnostic approach, especially the introduction of artificial intelligence techniques such as deep learning, has improved the rate and precision at which malaria parasites are diagnosed in resource-limited countries where time is of the essence. Furthermore, there have been significant advances in drug discovery due to machine learning applications that have made it quicker to find new antimalarial drugs in the face of drug resistance. Despite these developments, there are still problems such as drug resistance, socio-economic disparities, and the environment that are being altered and still require an integrated and transdisciplinary approach. Combining these determinants is indispensable for eliminating these challenges and further promoting global efforts to control malaria.

    Keywords :

    Malaria , Transmission ecology , Machine learning , Drug resistance and diagnostics

    References

    [1] N. J. White, “The Treatment of Malaria,” New England Journal of Medicine, vol. 335, no. 11, pp. 800–806, Sep. 1996, doi: 10.1056/NEJM199609123351107.

    [2] P. E. Duffy, J. P. Gorres, S. A. Healy, and M. Fried, “Malaria vaccines: a new era of prevention and control,” Nature Reviews Microbiology 2024, pp. 1–17, Jul. 2024, doi: 10.1038/s41579-024-01065-7.

    [3] G. Neta et al., “Advancing climate change health adaptation through implementation science,” Lancet Planet Health, vol. 6, no. 11, pp. e909–e918, Nov. 2022, doi: 10.1016/S2542-5196(22)00199-1.

    [4] L. Ammatawiyanon, P. Tongkumchum, A. Lim, and D. McNeil, “Modelling malaria in southernmost provinces of Thailand: a two-step process for analysis of highly right-skewed data with a large proportion of zeros,” Malar J, vol. 21, no. 1, pp. 1–10, Dec. 2022, doi: 10.1186/S12936-022-04363-8/FIGURES/8.

    [5] K. Hoyos and W. Hoyos, “Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation,” Diagnostics 2024, Vol. 14, Page 690, vol. 14, no. 7, p. 690, Mar. 2024, doi: 10.3390/DIAGNOSTICS14070690.

    [6] O. Khan, J. O. Ajadi, and M. P. Hossain, “Predicting malaria outbreak in The Gambia using machine learning techniques,” PLoS One, vol. 19, no. 5, p. e0299386, May 2024, doi: 10.1371/JOURNAL.PONE.0299386.

    [7] N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of artificial intelligence techniques in disease diagnosis and prediction,” Discover Artificial Intelligence 2023 3:1, vol. 3, no. 1, pp. 1–14, Jan. 2023, doi: 10.1007/S44163-023-00049-5.

    [8] A. Abdulrahman, .. Z. M., A. M. Zaki, F. H. H.Rizk, M. M. Eid, and E.-S. M. EL EL-Kenawy, “Exploring Optimization Algorithms: A Review of Methods and Applications,” Journal of Artificial Intelligence and Metaheuristics, vol. 7, no. 2, pp. 08–17, 2024, doi: 10.54216/JAIM.070201.

    [9] J. L. Siqueira-Neto, K. J. Wicht, K. Chibale, J. N. Burrows, D. A. Fidock, and E. A. Winzeler, “Antimalarial drug discovery: progress and approaches,” Nat Rev Drug Discov, vol. 22, no. 10, p. 807, Oct. 2023, doi: 10.1038/S41573-023-00772-9.

    [10] M. K. Tully, S. Dini, J. A. Flegg, J. S. McCarthy, D. J. Price, and J. A. Simpson, “Evaluation of a Bayesian hierarchical pharmacokinetic-pharmacodynamic model for predicting parasitological outcomes in Phase 2 studies of new antimalarial drugs,” Antimicrob Agents Chemother, vol. 68, no. 9, p. e0086324, Sep. 2024, doi: 10.1128/AAC.00863-24.

    [11] K. Farhadyar, F. Bonofiglio, M. Hackenberg, M. Behrens, D. Zöller, and H. Binder, “Combining propensity score methods with variational autoencoders for generating synthetic data in presence of latent sub-groups,” BMC Med Res Methodol, vol. 24, no. 1, Dec. 2024, doi: 10.1186/S12874-024-02327-X.

    [12] A. Salahi-Moghaddam, H. Turki, M. Yeryan, and M. V. Fuentes, “Spatio-temporal Prediction of the Malaria Transmission Risk in Minab District (Hormozgan Province, Southern Iran),” Acta Parasitol, vol. 67, no. 4, pp. 1500–1513, Dec. 2022, doi: 10.1007/S11686-022-00598-2/FIGURES/10.

    [13] O. Bent, “Machine learning applied to prediction, control and planning from dynamic epidemiological models,” 2020.

    [14] Danishuddin, G. Madhukar, M. Z. Malik, and N. Subbarao, “Development and rigorous validation of antimalarial predictive models using machine learning approaches,” SAR QSAR Environ Res, vol. 30, no. 8, pp. 543–560, Aug. 2019, doi: 10.1080/1062936X.2019.1635526.

    [15] A. Verras et al., “Shared Consensus Machine Learning Models for Predicting Blood Stage Malaria Inhibition,” J Chem Inf Model, vol. 57, no. 3, pp. 445–453, Mar. 2017, doi: 10.1021/ACS.JCIM.6B00572/SUPPL_FILE/CI6B00572_SI_004.XLSX.

    [16] Areefa, S. K. Koneru, K. Pragathi, and K. Rishitha, “Malaria Parasite Detection and Outbreak Warning System Using Deep Learning,” Lecture Notes in Electrical Engineering, vol. 1066 LNEE, pp. 557–572, 2023, doi: 10.1007/978-981-99-4634-1_43/FIGURES/15.

    [17] J. M. K. Aheto, L. J. Menezes, W. Takramah, and L. Cui, “Modelling spatiotemporal variation in under-five malaria risk in Ghana in 2016–2021,” Malar J, vol. 23, no. 1, pp. 1–12, Dec. 2024, doi: 10.1186/S12936-024-04918-X/FIGURES/6.

    [18] T. Santosh, D. Ramesh, and D. Reddy, “LSTM based prediction of malaria abundances using big data,” Comput Biol Med, vol. 124, p. 103859, Sep. 2020, doi: 10.1016/J.COMPBIOMED.2020.103859.

    [19] M. Suriya, V. Chandran, and M. G. Sumithra, “Enhanced deep convolutional neural network for malarial parasite classification,” International Journal of Computers and Applications, vol. 44, no. 12, pp. 1113–1122, 2022, doi: 10.1080/1206212X.2019.1672277.

    [20] M. Suriya, V. Chandran, and M. G. Sumithra, “Design of Deep Convolutional Neural Network for Efficient Classification of Malaria Parasite,” EAI/Springer Innovations in Communication and Computing, pp. 169–175, 2021, doi: 10.1007/978-3-030-47560-4_13/FIGURES/2.

    [21] E. Moysis, B. J. Brown, W. Shokunbi, P. Manescu, and D. Fernandez-Reyes, “Leveraging deep learning for detecting red blood cell morphological changes in blood films from children with severe malaria anaemia,” Br J Haematol, vol. 205, no. 2, pp. 699–710, Aug. 2024, doi: 10.1111/BJH.19599.

    [22] M. O. F. Goni et al., “Diagnosis of Malaria Using Double Hidden Layer Extreme Learning Machine Algorithm With CNN Feature Extraction and Parasite Inflator,” IEEE Access, vol. 11, pp. 4117–4130, 2023, doi: 10.1109/ACCESS.2023.3234279.

    [23] Y. H. Zhang, L. H. Xie, J. Li, Y. W. Qi, and J. J. Shi, “Classification and clinical significance of immunogenic cell death-related genes in Plasmodium falciparum infection determined by integrated bioinformatics analysis and machine learning,” Malar J, vol. 23, no. 1, pp. 1–14, Dec. 2024, doi: 10.1186/S12936-024-04877-3/FIGURES/6.

    [24] R. Forien and P. Lefèvre, “Mathematical Modelling of Infectious Diseases: COVID-19 and Malaria Ousmane DIAO,” 2023.

    [25] Y. Bogale, C. P. Mukamakuza, and E. Tuyishimire, “Intelligent Malaria Detection and Species Classification: A Case of Rwanda,” Lecture Notes in Networks and Systems, vol. 1002 LNNS, pp. 507–520, 2024, doi: 10.1007/978-981-97-3299-9_41/FIGURES/7.

    [26] J. C. Ditz, J. Wistuba-Hamprecht, T. Maier, R. Fendel, N. Pfeifer, and B. Reuter, “PlasmoFAB: a benchmark to foster machine learning for Plasmodium falciparum protein antigen candidate prediction,” Bioinformatics, vol. 39, no. Supplement_1, pp. i86–i93, Jun. 2023, doi: 10.1093/BIOINFORMATICS/BTAD206.

     

    Cite This Article As :
    Mohamed, Ahmed. , Sh., Khaled. , H., Faris. , Elshabrawy, Mahmoud. Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights. Metaheuristic Optimization Review, vol. , no. , 2024, pp. 55-65. DOI: https://doi.org/10.54216/MOR.010105
    Mohamed, A. Sh., K. H., F. Elshabrawy, M. (2024). Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights. Metaheuristic Optimization Review, (), 55-65. DOI: https://doi.org/10.54216/MOR.010105
    Mohamed, Ahmed. Sh., Khaled. H., Faris. Elshabrawy, Mahmoud. Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights. Metaheuristic Optimization Review , no. (2024): 55-65. DOI: https://doi.org/10.54216/MOR.010105
    Mohamed, A. , Sh., K. , H., F. , Elshabrawy, M. (2024) . Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights. Metaheuristic Optimization Review , () , 55-65 . DOI: https://doi.org/10.54216/MOR.010105
    Mohamed A. , Sh. K. , H. F. , Elshabrawy M. [2024]. Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights. Metaheuristic Optimization Review. (): 55-65. DOI: https://doi.org/10.54216/MOR.010105
    Mohamed, A. Sh., K. H., F. Elshabrawy, M. "Machine Learning Approaches for Malaria Risk Prediction and Detection: Trends and Insights," Metaheuristic Optimization Review, vol. , no. , pp. 55-65, 2024. DOI: https://doi.org/10.54216/MOR.010105