Journal of Artificial Intelligence and Metaheuristics

Journal DOI

https://doi.org/10.54216/JAIM

Submit Your Paper

2833-5597ISSN (Online)

Volume 10 , Issue 2 , PP: 67-81, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms

Ahmed Hamid Elias 1 * , Dhurgham Abbas Mohsin Albojwaid 2 , Ahmed younus abdulkadhim 3 * , Raad S. Alhumaima 4 , Laith Farhan 5

  • 1 College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University, Najaf, Iraq - (ahmed.elias@atu.edu.iq)
  • 2 Jabir Ibn Hayyan University for Medical and Pharmaceutical Sciences, Central Library Automated Systems Department, Najaf, Iraq - (Dhurgham.a.mohsin@jmu.edu.iq)
  • 3 College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University, Najaf, Iraq - (ahmed.kazem.chm@atu.edu.iq)
  • 4 Brunel University, Uxbridge UB8 3PH, U. K - (1234914@alumni.brunel.ac.uk)
  • 5 School of Engineering, Manchester Metropolitan University, Manchester, M1, UK - (l.al-bayati@mmu.ac.uk)
  • Doi: https://doi.org/10.54216/JAIM.100205

    Received: April 25, 2025 Revised: July 10, 2025 Accepted: September 12, 2025
    Abstract

    Integration of quantum-inspired algorithms in machine learning has opened up new horizons for improving predictive performance, efficiency, and scalability across a broad spectrum of application domains. This paper presents a comparative investigation between traditional machine learning techniques and quantum-inspired models. Experimental experiments demonstrate that quantum-inspired approaches exhibit higher accuracy, training effectiveness, and stability on difficult datasets than traditional methods. Results point towards higher convergence rates, shorter runtime, and enhanced generalization capacity in quantum-inspired models, realized in the form of enhanced accuracy, precision, recall, and F1-scores. Receiver operating characteristic (ROC) and precision–recall analyses further confirm the superior discriminative power of quantum-inspired approaches. Results point toward the potential of quantum-inspired machine learning as an interface between conventional algorithms and the new frontier of quantum computing with a stepping stone to future-proof intelligent systems.

    Keywords :

    Quantum-Inspired Algorithms , Machine Learning , Quantum Computing , Predictive Analytics , Model Optimization , Hybrid Frameworks , Performance Metrics , Artificial Intelligence

    References

     

    [1]       B. Jeyaprabha and C. Sundar, “The mediating effect of e-satisfaction on e-service quality and e-loyalty link in securities brokerage industry,” Revista Geintec-gestao Inovacao E Tecnologias, vol.11, no. 2, pp. 931–940, 2021.

     

    [2]       B. Jeyaprabha and C. Sunder, “What influences online stock traders’ online loyalty intention? Themoderating role of website familiarity,” Journal of Tianjin University Science and Technology.

     

    [3]       B. Jeyaprabha, S. Catherine, and M. Vijayakumar, “Unveiling the economic tapestry: Statisticalinsights into India’s thriving travel and tourism sector,” in Managing Tourism and HospitalitySectors for Sustainable Global Transformation, pp. 249–259, IGI Global, 2024.

     

    [4]       B. Jeyaprabha and C. Sundar, “The psychological dimensions of stock trader satisfaction with thee-broking service provider,” Journal of Positive School Psychology, pp. 3787–3795, 2022.

     

    [5]       A. B. Nadaf, S. Sharma, and K. K. Trivedi, Contemporary Social Media and IoT-Based PandemicControl: An Analytical Approach, Weser Books, 2024, p. 73.

     

    [6]       K. K. Trivedi, “A framework of legal education towards litigation-free India,” Indian Journal ofLaw & Legal Research, vol. 3, pp. 1–4, 2022.

     

    [7]       K. K. Trivedi, “Historical and conceptual development of parliamentary privileges in India,” 2022.

     

    [8]       H. Gupta and K. K. Trivedi, “International water clashes and India (a study of Indian river-watertreaties with Bangladesh and Pakistan),” 2017.

     

    [9]       S. S. Nair, G. Lakshmikanthan, S. H. Kendyala, and V. S. Dhaduvai, “Safeguarding tomorrow—Fortifying child safety in digital landscape,” in Proc. 2024 Int. Conf. on Computing, Sciences andCommunications (ICCSC), pp. 1–6, IEEE, Oct. 2024.

     

    [10]    G. Lakshmikanthan, S. S. Nair, J. P. Sarathy, S. Singh, S. Santiago, and B. Jegajothi, “MitigatingIoT botnet attacks: Machine learning techniques for securing connected devices,” in Proc. 2024Int. Conf. on Emerging Research in Computational Science (ICERCS), pp. 1–6, IEEE, Dec. 2024.

     

    [11]    S. S. Nair, “Digital warfare: Cybersecurity implications of the Russia-Ukraine conflict,” Int. J. ofEmerging Trends in Computer Science and Information Technology, vol. 4, no. 4, pp. 31–40,2023.

     

    [12]    G. Mahendran, S. M. Kumar, V. C. Uvaraja, and H. Anand, “Effect of wheat husk biogenicceramic Si3N4 addition on mechanical, wear and flammability behaviour of castor sheath fibre-reinforced epoxy composite,” Journal of the Australian Ceramic Society, pp. 1–10, 2025.

     

    [13]    G. Mahendran, M. Mageswari, I. Kakaravada, and P. K. V. Rao, “Characterization of polyestercomposite developed using silane-treated rubber seed cellulose toughened acrylonitrile butadienestyrene honeycomb core and sunn hemp fiber,” Polymer Bulletin, vol. 81, no. 17, pp. 15955–15973, 2024.

     

    [14]    G. Mahendran, M. M. Gift, I. Kakaravada, and V. L. Raja, “Load bearing investigations onlightweight rubber seed husk cellulose–ABS 3D-printed core and sunn hemp fiber-polyestercomposite skin building material,” Macromolecular Research, vol. 32, no. 10, pp. 947–958, 2024.

     

    [15]    F. Chunara, S. P. Dehankar, A. A. Sonawane, V. Kulkarni, E. Bhatti, D. Samal, and R. Kashwani,“Advancements in biocompatible polymer-based nanomaterials for restorative dentistry:Exploring innovations and clinical applications—A literature review,” African Journal ofBiomedical Research, vol. 27, no. 3S, pp. 2254–2262, 2024.

     

    [16]    N. N. I. Prova, “Healthcare fraud detection using machine learning,” in Proc. 2024 2nd Int. Conf.on Intelligent Cyber Physical Systems and IoT (ICoICI), IEEE, 2024.

     

    [17]    N. N. I. Prova, “Garbage intelligence: Utilizing vision transformer for smart waste sorting,” inProc. 2024 2nd Int. Conf. on Intelligent Cyber Physical Systems and IoT (ICoICI), pp. 1213–1219,IEEE, Aug. 2024.

     

    [18]    N. N. I. Prova, “Advanced machine learning techniques for predictive analysis of healthinsurance,” in Proc. 2024 2nd Int. Conf. on Intelligent Cyber Physical Systems and IoT (ICoICI),pp. 1166–1170, IEEE, Aug. 2024.

     

    [19]    K. Vijayalakshmi, R. Amuthakkannan, K. Ramachandran, and S. A. Rajkavin, “Federatedlearning-based futuristic fault diagnosis and standardization in rotating machinery,” SSRG Int. J.of Electronics and Communication Engineering, vol. 11, no. 9, pp. 223–236, 2024.

     

    [20]    K. Devi and D. Indoria, “Digital payment service in India: A review on unified payment interface,”Int. J. of Aquatic Science, vol. 12, no. 3, pp. 1960–1966, 2021.

     

    [21]    G. H. Kumar, D. K. Raja, H. D. Varun, and S. Nandikol, “Optimizing spatial efficiency throughvelocity-responsive controller in vehicle platooning,” in Proc. 2024 8th Int. Conf. onComputational System and Information Technology for Sustainable Solutions (CSITSS), pp. 1–5,IEEE, Nov. 2024.

     

    [22]    B. S. Vidhyasagar, K. Harshagnan, M. Diviya, and S. Kalimuthu, “Prediction of tomato leafdisease plying transfer learning models,” in Proc. IFIP Int. Internet of Things Conf., pp. 293–305,Springer, Oct. 2023.

     

    [23]    V. P. Belavkin, “Optimal multiple quantum statistical hypothesis testing,” Stochastics, vol. 1, no.1–4, pp. 315–345, 1975.

     

    [24]    V. P. Belavkin, “Optimal distinction of non-orthogonal quantum signals,” Radio Eng. ElectronPhys., vol. 20, pp. 39–47, 1975.

     

    [25]    C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

     

    [26]    M. C. Caro, H. Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio, and P. J. Coles,“Generalization in quantum machine learning from few training data,” Nat. Commun., vol. 13, p.4919, 2022.

     

    [27]    A. Chefles, “Quantum state discrimination,” Contemp. Phys., vol. 41, no. 6, pp. 401–424, 2000.

     

    [28]    N. H. Chia, T. Li, H. H. Lin, and C. Wang, “Quantum-inspired sublinear algorithm for solvinglow-rank semidefinite programming,” arXiv preprint arXiv:1901.03254, 2019.

     

    [29]    C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297,1995.

     

    [30]    D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett. A, vol. 126, no. 5–6, pp.303–306, 1988.

     

    [31]    Y. Du, M. H. Hsieh, T. Liu, and D. Tao, “Expressive power of parametrized quantum circuits,”Phys. Rev. Res., vol. 2, no. 3, p. 033125, 2020.

     

    [32]    Y. C. Eldar, A. Megretski, and G. C. Verghese, “Designing optimal quantum detectors viasemidefinite programming,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 1007–1012, 2003.

     

    [33]    S. Gambs, “Quantum classification,” arXiv preprint arXiv:0809.0444, 2008.

     

    [34]    A. Gilyén, Z. Song, and E. Tang, “An improved quantum-inspired algorithm for linear regression,”Quantum, vol. 6, p. 754, 2022.

     

    [35]    A. Gilyén, S. Lloyd, I. Marvian, Y. Quek, and M. M. Wilde, “Quantum algorithm for Petz recoverychannels and pretty good measurements,” Phys. Rev. Lett., vol. 128, no. 22, 2022.

     

    [36]    R. Giuntini, F. Holik, D. K. Park, H. Freytes, C. Blank, and G. Sergioli, “Quantum-inspiredalgorithm for direct multi-class classification,” Appl. Soft Comput., vol. 134, p. 109956, 2023.

     

    [37]    R. Giuntini, H. Freytes, D. K. Park, C. Blank, F. Holik, K. L. Chow, and G. Sergioli, “Quantumstate discrimination for supervised classification,” arXiv preprint arXiv:2104.00971, 2021.

     

    [38]    E. Grant, M. Benedetti, S. Cao, V. Hallam, J. Lockhart, V. Stojevic, A. G. Green, and S. Severini,“Hierarchical quantum classifiers,” Quantum Information, vol. 4, no. 1, p. 65, 2018.

     

    [39]    S. Greydanus, “Scaling down deep learning,” arXiv preprint arXiv:2011.14439, 2020.

     

    [40]    M. Gruber, Improving Efficiency by Shrinkage: The James–Stein and Ridge RegressionEstimators. Routledge, 2017.

     

    [41]    P. Hausladen and W. K. Wootters, “A ‘pretty good’ measurement for distinguishing quantumstates,” J. Mod. Opt., vol. 41, no. 12, pp. 2385–2390, 1994.

     

    [42]    P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, “Classicalinformation capacity of a quantum channel,” Phys. Rev. A, vol. 54, no. 3, p. 1869, 1996.

     

    [43]    V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M.Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no.7747, pp. 209–213, 2019.

     

    [44]    C. W. Helstrom, “Quantum detection and estimation theory,” J. Stat. Phys., vol. 1, no. 2, pp. 231–252, 1969.

     

    [45]    J. M. Hilbe, Logistic Regression Models. CRC Press, 2009.

     

    [46]    T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” Ann. Stat.,vol. 36, no. 3, pp. 1171–1220, 2008.

     

    [47]    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory. Springer, 2011.

     

    [48]    I. D. Ivanovic, “How to differentiate between non-orthogonal states,” Phys. Lett. A, vol. 123, no.6, pp. 257–259, 1987.

     

    [49]    P. Kennedy, A Guide to Econometrics. Wiley, 2008.

     

    [50]    A. S. Kholevo, “On asymptotically optimal hypothesis testing in quantum statistics,” TheoryProbab. Appl., vol. 23, no. 2, pp. 411–415, 1979.

     

    [51]    R. LaRose and B. Coyle, “Robust data encodings for quantum classifiers,” Phys. Rev. A, vol. 102,p.032420, 2020.

     

    [52]    Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to documentrecognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

     

    [53]    A. Montanaro, “Pretty simple bounds on quantum state discrimination,” arXiv preprintarXiv:1908.08312, 2019.

     

    [54]    F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp.2825–2830, 2011.

     

    [55]    A. Peres, “How to differentiate between non-orthogonal states,” Phys. Lett. A, vol. 128, no. 1–2,p.19, 1988.

     

    [56]    A. Peres and W. K. Wootters, “Optimal detection of quantum information,” Phys. Rev. Lett., vol.66, no. 9, p. 1119, 1991.

     

    [57]    M. Schuld, “Supervised quantum machine learning models are kernel methods,” arXiv preprintarXiv:2101.11020, 2021.

     

    [58]    M. Schuld and N. Killoran, “Quantum machine learning in feature Hilbert spaces,” Phys. Rev.Lett., vol. 122, no. 4, 2019.

     

    [59]    M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the expressive power ofvariational quantum-machine-learning models,” Phys. Rev. A, vol. 103, p. 032430, 2021.

     

    [60]    G. Sergioli, E. Santucci, L. Didaci, J. A. Miszczak, and R. Giuntini, “A quantum-inspired versionof the nearest mean classifier,” Soft Comput., vol. 22, no. 3, pp. 691–705, 2018.

     

    [61]    G. Sergioli, R. Giuntini, and H. Freytes, “A new quantum approach to binary classification,” PLoSONE, vol. 14, no. 5, p. e0216224, 2019.

     

    [62]    F. Tacchino, P. Barkoutsos, C. Macchiavello, I. Tavernelli, D. Gerace, and D. Bajoni, “Quantumimplementation of an artificial feed-forward neural network,” Quantum Sci. Technol., vol. 5, no.4, p. 044010, 2020.

     

    [63]    E. Tang, “Quantum-inspired classical algorithms for singular value transformation,” in Proc. 51stACM SIGACT Symp. Theory of Computing, pp. 217–228, 2019.

     

    [64]    Alhasani T. A., Alkattan H., Ali A., El-Kenawy E.-S. M., and Eid M. M., “A ComparativeAnalysis of Methods for Detecting and Diagnosing Breast Cancer Based on Data Mining,” Journalof Artificial Intelligence and Metaheuristics, vol. 4, no. 2, pp. 08-17, 2023, doi:10.54216/JAIM.040201.

     

    [65]    Doaa S. Khafaga, Hussein Alkattan, Alhumaima A. Subhi, “Evaluating the Effect of OptimizedVoting Using Hybrid Particle Swarm and Grey Wolf Algorithm on the Classification of the ZooDataset,” Journal of Artificial Intelligence and Metaheuristics, vol. 2, no. 1, pp. 08-15, 2022, doi:10.54216/JAIM.020101.

     

    [66]    H. K. Al-Mahdawi, M. Abotaleb, H. Alkattan, E.-S. M. El-Kenawy, and E. M. Mohamed, “Solvingthe Inverse Initial Value Problem for the Heat Conductivity Equation by Using the PicardMethod,” Journal of Artificial Intelligence and Metaheuristics, vol. 2, no. 2, pp. 46-55, 2022, doi:10.54216/JAIM.020205.

     

    [67]    H. Alkattan, S. K. Towfek, and M. Y. Shams, “Tapping into Knowledge: Ontological Data MiningApproach for Detecting Cardiovascular Disease Risk Causes Among Diabetes Patients,” Journalof Artificial Intelligence and Metaheuristics, vol. 4, no. 1, pp. 08-15, 2023, doi:10.54216/JAIM.040101.

     

    [68]    Noor Razzaq Abbas, Hussein Alkattan, Hamidreza Rabiei-Dastjerdi, Mohamed Saber, and MarwaM.Eid, “Monthly Solar Prediction Using Machine Learning: Diyala Governorate, Iraq as a CaseStudy,” Journal of Artificial Intelligence and Metaheuristics, vol. 5, no. 2, pp. 41-46, 2023, doi:10.54216/JAIM.050204.

     

    [69]    Al-Mahdawi H. K., Alhumaima Ali Subhi, Hussein Alkattan, Mohamed Saber, Marwa M. Eid,Anfal A. Sabti Al-Mahdawi, and Jinan A. M. Al-Saddaee, “Solving Initial Value Problem inComposite Materials for Heat Equation,” Journal of Artificial Intelligence and Metaheuristics, vol.6, no. 1, pp. 08-17, 2023, doi: 10.54216/JAIM.060101.

     

    [70]    Al-Seyday, T. Qenawy; Hussein Alkattan; Amany Khaled, “Securing DNS over HTTPS: AMachine Learning Study on Traffic Classification Using DoHBrw-2020,” Journal of ArtificialIntelligence and Metaheuristics, vol. 7, no. 2, pp. 73-81, 2024, doi:10.54216/JAIM.070207.

     

    [71]    A. Gupta and R. Kumar, “A Hybrid Deep Learning Approach for Brain Stroke Detection Using MRI Images,” Journal of Medical Systems, vol. 46, no. 3, pp. 1-10, 2022. doi: 10.1007/s10916-022-01844-7.

     

    Cite This Article As :
    Hamid, Ahmed. , Abbas, Dhurgham. , younus, Ahmed. , S., Raad. , Farhan, Laith. Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms. Journal of Artificial Intelligence and Metaheuristics, vol. , no. , 2025, pp. 67-81. DOI: https://doi.org/10.54216/JAIM.100205
    Hamid, A. Abbas, D. younus, A. S., R. Farhan, L. (2025). Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms. Journal of Artificial Intelligence and Metaheuristics, (), 67-81. DOI: https://doi.org/10.54216/JAIM.100205
    Hamid, Ahmed. Abbas, Dhurgham. younus, Ahmed. S., Raad. Farhan, Laith. Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms. Journal of Artificial Intelligence and Metaheuristics , no. (2025): 67-81. DOI: https://doi.org/10.54216/JAIM.100205
    Hamid, A. , Abbas, D. , younus, A. , S., R. , Farhan, L. (2025) . Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms. Journal of Artificial Intelligence and Metaheuristics , () , 67-81 . DOI: https://doi.org/10.54216/JAIM.100205
    Hamid A. , Abbas D. , younus A. , S. R. , Farhan L. [2025]. Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms. Journal of Artificial Intelligence and Metaheuristics. (): 67-81. DOI: https://doi.org/10.54216/JAIM.100205
    Hamid, A. Abbas, D. younus, A. S., R. Farhan, L. "Quantum-Inspired Machine Learning: Bridging Classical and Quantum Algorithms," Journal of Artificial Intelligence and Metaheuristics, vol. , no. , pp. 67-81, 2025. DOI: https://doi.org/10.54216/JAIM.100205