Journal of Artificial Intelligence and Metaheuristics

Journal DOI

https://doi.org/10.54216/JAIM

Submit Your Paper

2833-5597ISSN (Online)

Volume 10 , Issue 1 , PP: 72-87, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems

Marwa M. Eid 1 *

  • 1 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (mmm@ieee.org)
  • Doi: https://doi.org/10.54216/JAIM.100104

    Received: March 28, 2025 Revised: June 18, 2025 Accepted: August 19, 2025
    Abstract

    The importance of network security has greatly been enhanced in the modern digital environment that continuously changes. Network security, on the other hand, is a multi-layered defense mechanism that seeks to protect networks, data, and systems from malpractices such as unauthorized access breaches or activities. Cyber threats become ever more advanced, and traditional protective measures can no longer prove to be adequate. Given the necessity of such a threat to adapt and be intelligent, an active intrusion detection system must necessarily rapidly evolve its methods in response. The central element contained in this research is the proposal of a novel algorithm, BBERSC (Balance Between Al Biruni Earth Radius Optimization and Sine Cosine Algorithm). This algorithm is carefully crafted to achieve a compromise between the means for local search provided by Al-Biruni Earth Radius Optimization and probabilistic improvement, which are characteristic of the Swine Cosine Algorithm. BBERSC brings forward the cause of harmonizing these two optimization methods to revolutionize model accuracy and credibility, which may be achieved for network security’s distinctiveness. One of the crucial elements of this study lies in the fact that hyperparameter tuning is quite a detailed process, especially for Random Forest. Parameters, including the number of trees, maximum depth, and minimum samples, are systematically employed to vary to augment pattern recognition capability by employing model processing network traffic. To ensure the validation of the effectiveness of the proposed models and algorithms, statistical analysis is carried out through ANOVA test & Wilcoxon Signed Rank Test. These tests show the models’ results through rigorous assessments and emphasize differences between them. As the conclusion of this study, It is displayed that the Random Forest model utilized inside BBERSC algorithmic framework facilitates operational accuracy level 0.9901719, which is incomparable among all other machine learning algorithms.

    Keywords :

    Network Requests , Al-Biruni Earth Radius Optimization , Sine Cosine Algorithm , Network Security , Intrusion Detection

    References

    [1] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: A methodological tour d’horizon,” European Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021, ISSN: 03772217. DOI: 10.1016/j.ejor.2020.07.063.

     

    [2] D. S. Khafaga et al., “An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox Disease,” en, Diagnostics, vol. 12, no. 11, p. 2892, Nov. 2022, ISSN: 2075-4418. DOI: 10.3390/diagnostics12112892. Accessed: Mar. 16, 2024. [Online]. Available: https://www.mdpi.com/2075-4418/12/11/2892.

     

    [3] D. R. Nayak, R. Dash, B. Majhi, and S. Wang, “Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain,” en, Computers & Electrical Engineering, vol. 68, pp. 366–380, May 2018, ISSN: 00457906. DOI: 10.1016/j.compeleceng.2018.04. 009. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0045790617334572.

     

    [4] V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” en, The Journal of Supercomputing, vol. 77, no. 5, pp. 5198–5219, May 2021, ISSN: 0920-8542, 1573-0484. DOI: 10.1007/s11227-020-03481-x. Accessed: Mar. 16, 2024. [Online]. Available: http : / / link . springer . com / 10 . 1007 / s11227-020-03481-x.

     

    [5] C. M. Ye¸silkanat, “Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm,” en, Chaos, Solitons & Fractals, vol. 140, p. 110 210, Nov. 2020, ISSN: 09600779. DOI: 10 . 1016 / j . chaos . 2020 . 110210. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii / S0960077920306068.

     

    [6] T. Cuong-Le, T. Nghia-Nguyen, S. Khatir, P. Trong-Nguyen, S. Mirjalili, and K. D. Nguyen, “An efficient approach for damage identification based on improved machine learning using PSO-SVM,” en, Engineering with Computers, vol. 38, no. 4, pp. 3069–3084, Aug. 2022, ISSN: 0177-0667, 1435-5663. DOI: 10.1007/s00366-021-01299-6. Accessed: Mar. 16, 2024. [Online]. Available: https: //link.springer.com/10.1007/s00366-021-01299-6.

     

    [7] R. Alkanhel et al., “Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization,” en, Computers, Materials & Continua, vol. 79, no. 3, pp. 3549–3568, 2024, Publisher: Tech Science Press, ISSN: 1546-2218, 1546-2226. DOI: 10.32604/cmc.2024.049582.

     

    [8] Y. Tikhamarine, D. Souag-Gamane, A. Najah Ahmed, O. Kisi, and A. El-Shafie, “Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm,” en, Journal of Hydrology, vol. 582, p. 124 435, Mar. 2020, ISSN: 00221694. DOI: 10 . 1016/j.jhydrol.2019.124435. Accessed: Mar. 16, 2024. [Online]. Available: https:// linkinghub.elsevier.com/retrieve/pii/S0022169419311709.

     

    [9] E. M. Hassib, A. I. El-Desouky, L. M. Labib, and E.-S. M. El-kenawy, “WOA + BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network,” en, Soft Computing, vol. 24, no. 8, pp. 5573–5592, Apr. 2020, ISSN: 1432-7643, 1433-7479. DOI: 10 . 1007 / s00500 - 019 - 03901 - y. Accessed: Mar. 16, 2024. [Online]. Available: http : / / link.springer.com/10.1007/s00500-019-03901-y.

     

    [10] H. Nguyen, X.-N. Bui, Y. Choi, C. W. Lee, and D. J. Armaghani, “A Novel Combination of Whale Optimization Algorithm and Support Vector Machine with Different Kernel Functions for Prediction of Blasting-Induced Fly-Rock in Quarry Mines,” en, Natural Resources Research, vol. 30, no. 1, pp. 191–207, Feb. 2021, ISSN: 1520-7439, 1573-8981. DOI: 10 . 1007 / s11053 - 020 - 09710 -7. Accessed: Mar. 16, 2024. [Online]. Available: https://link.springer.com/10.1007/ s11053-020-09710-7.

     

    [11] F. B. Banadkooki et al., “Enhancement of Groundwater-Level Prediction Using an Integrated Machine Learning Model Optimized by Whale Algorithm,” en, Natural Resources Research, vol. 29, no. 5, pp. 3233–3252, Oct. 2020, ISSN: 1520-7439, 1573-8981. DOI: 10.1007/s11053-020-09634-2. Accessed: Mar. 16, 2024. [Online]. Available: http : / / link . springer . com / 10 . 1007 / s11053-020-09634-2.

     

    [12] A. M. Anter, M. Abd Elaziz, and Z. Zhang, “Real-time epileptic seizure recognition using Bayesian genetic whale optimizer and adaptive machine learning,” en, Future Generation Computer Systems, vol. 127, pp. 426–434, Feb. 2022, ISSN: 0167739X. DOI: 10 . 1016 / j . future . 2021 . 09 . 032. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0167739X21003782.

     

     [13] S. Nusinovici et al., “Logistic regression was as good as machine learning for predicting major chronic diseases,” en, Journal of Clinical Epidemiology, vol. 122, pp. 56–69, Jun. 2020, ISSN: 08954356. DOI: 10.1016/j.jclinepi.2020.03.002. Accessed: Mar. 16, 2024. [Online]. Available: https: //linkinghub.elsevier.com/retrieve/pii/S0895435619310194.

     

     [14] H. Lu and X. Ma, “Hybrid decision tree-based machine learning models for short-term water quality prediction,” en, Chemosphere, vol. 249, p. 126 169, Jun. 2020, ISSN: 00456535. DOI: 10 . 1016 j . chemosphere .2020 . 126169. Accessed: Mar. 16, 2024. [Online]. Available: https : / // linkinghub.elsevier.com/retrieve/pii/S0045653520303623.

     

    [15] Y. Ao, H. Li, L. Zhu, S. Ali, and Z. Yang, “The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling,” en, Journal of Petroleum Science and Engineering, vol. 174, pp. 776–789, Mar. 2019, ISSN: 09204105. DOI: 10.1016/j.petrol.2018. 11 . 067. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com/retrieve/pii/S0920410518310635.

     

     [16] D. A. Pisner and D. M. Schnyer, “Support vector machine,” en, in Machine Learning, Elsevier, 2020, pp. 101–121, ISBN: 9780128157398. DOI: 10 . 1016 / B978 - 0 - 12 - 815739 - 8 . 00006 7. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com /- retrieve/pii/B9780128157398000067.

     

     [17] M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” en, Decision Analytics Journal, vol. 3, p. 100 071, Jun. 2022, ISSN: 27726622. DOI: 10 . 1016 /j . dajour . 2022 . 100071. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub.elsevier.com/retrieve/pii/S2772662222000261.

     

    [18] A. Asadikia, A. Rajabifard, and M. Kalantari, “Systematic prioritisation of SDGs: Machine learning approach,” en, World Development, vol. 140, p. 105 269, Apr. 2021, ISSN: 0305750X. DOI: 10 . 1016 /j . worlddev . 2020 . 105269. Accessed: Mar. 16, 2024. [Online]. Available: https : //linkinghub.elsevier.com/retrieve/pii/S0305750X2030396X.

     

     [19] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics,” en, Electronics, vol. 10, no. 5, p. 593, Mar. 2021, ISSN: 2079-9292. DOI: 10.3390/electronics10050593. Accessed: Mar. 16, 2024. [Online]. Available: https://www.mdpi.com/2079-9292/10/5/593.

     

    [20] H. Elazhary, “Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions,” en, Journal of Network and Computer Applications, vol. 128, pp. 105–140, Feb. 2019, ISSN: 10848045. DOI: 10 . 1016 / j . jnca . 2018 . 10 . 021. Accessed: Mar. 16, 2024. [Online]. Available: https : //linkinghub.elsevier.com/retrieve/pii/S1084804518303497.

     

    [21] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad, “IoT big data analytics for smart homes with fog and cloud computing,” en, Future Generation Computer Systems, vol. 91, pp. 563–573, Feb. 2019, ISSN: 0167739X. DOI: 10 . 1016 / j . future . 2018 . 08 . 040. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii / S0167739X18311099.

     

    [22] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions,” en, Future Generation Computer Systems, vol. 110, pp. 502–514, Sep. 2020, ISSN: 0167739X. DOI: 10.1016/j.future. 2017 . 10 . 029. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier.com/retrieve/pii/S0167739X1730047X.

     

    [23] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih, “Scheduling Internet of Things requests to minimize latency in hybrid Fog–Cloud computing,” en, Future Generation Computer Systems, vol. 111, pp. 539–551, Oct. 2020, ISSN: 0167739X. DOI: 10.1016/j.future.2019.09.039. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S0167739X18303327.

     

     [24] Y. Lu and X. Xu, “Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services,” en, Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 92–102, Jun. 2019, ISSN: 07365845. DOI: 10 . 1016 / j . rcim . 2018 . 11 . 006. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii / S0736584518302801.

     

     [25] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular Edge Computing and Networking: A Survey,” en, Mobile Networks and Applications, vol. 26, no. 3, pp. 1145–1168, Jun. 2021, ISSN:

     

    1383 469X, 1572-8153. DOI: 10 . 1007 / s11036 - 020 - 01624 - 1. Accessed: Mar. 16, 2024. [Online]. Available: https://link.springer.com/10.1007/s11036-020-01624-1.

     

    [26] L. J. Muhammad, E. A. Algehyne, S. S. Usman, A. Ahmad, C. Chakraborty, and I. A. Mohammed, “Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset,” en, SN Computer Science, vol. 2, no. 1, p. 11, Feb. 2021, ISSN: 2662-995X, 2661-8907. DOI: 10.1007/s42979- 020- 00394- 7. Accessed: Mar. 16, 2024. [Online]. Available: http: //link.springer.com/10.1007/s42979-020-00394-7.

     

    [27] I. Sreeram and V. P. K. Vuppala, “HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm,” en, Applied Computing and Informatics, vol. 15, no. 1, pp. 59–66, Jan. 2019, ISSN: 22108327. DOI: 10.1016/j.aci.2017.10.003. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S2210832717301655.

     

    [28] M. A. Hassan et al., “Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions,” en, Theoretical and Applied Climatology, vol. 150, no. 1-2, pp. 715–729, Oct. 2022, ISSN: 0177-798X, 1434-4483. DOI: 10 . 1007 / s00704 - 022 - 04166 - 6. Accessed: Mar. 16, 2024. [Online]. Available: https : / / link . springer . com / 10 . 1007 / s00704 -022-04166-6.

     

    [29] W. Tong, Q. Wei, H.-Y. Yan, M.-G. Zhang, and X.-M. Zhu, “Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes,” en, Frontiers of Physics, vol. 15, no. 6, p. 63 501, Dec. 2020, ISSN: 2095-0462, 2095-0470. DOI: 10.1007/s11467-020-0970-8. Accessed: Mar. 16, 2024. [Online]. Available: https : / / link . springer . com / 10 . 1007 / s11467-020-0970-8.

     

    [30] H. Li et al., “Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar,” en, Bioresource Technology, vol. 369, p. 128 417, Feb. 2023, ISSN: 09608524. DOI: 10.1016/j.biortech.2022.128417. Accessed: Mar. 16, 2024. [Online]. Available: https: //linkinghub.elsevier.com/retrieve/pii/S0960852422017503.

     

    [31] G. Li, Y. Sun, and C. Qi, “Machine learning-based constitutive models for cement-grouted coal specimens under shearing,” en, International Journal of Mining Science and Technology, vol. 31, no. 5, pp. 813–823, Sep. 2021, ISSN: 20952686. DOI: 10.1016/j.ijmst.2021.08.005. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S2095268621000902.

     

    [32] K. Sandunil, Z. Bennour, H. Ben Mahmud, and A. Giwelli, “Effects of Tuning Hyperparameters in Random Forest Regression on Reservoir’s Porosity Prediction. Case Study: Volve Oil Field, North Sea,” in All Days, Atlanta, Georgia, USA: ARMA, Jun. 2023, ARMA–2023–0660. DOI: 10.56952/ ARMA- 2023- 0660. Accessed: Mar. 16, 2024. [Online]. Available: https://onepetro.org/ ARMAUSRMS/proceedings/ARMA23/All-ARMA23/ARMA-2023-0660/532467.

     

    [33] M. H. D. M. Ribeiro, R. G. Da Silva, S. R. Moreno, V. C. Mariani, and L. D. S. Coelho, “Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting,” en, International Journal of Electrical Power & Energy Systems, vol. 136, p. 107 712, Mar. 2022, ISSN: 01420615. DOI: 10 . 1016 / j . ijepes . 2021 . 107712. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii /S0142061521009376.

     

    [34] E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis,” en, Informatics, vol. 8, no. 4, p. 79, Nov. 2021, ISSN: 2227-9709. DOI: 10.3390/informatics8040079. Accessed: Mar. 16, 2024. [Online]. Available: https://www.mdpi.com/2227-9709/8/4/79.

     

     [35] P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning, “Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data,” en, Ecological Modelling, vol. 406, pp. 109–120, Aug. 2019, ISSN: 03043800. DOI: 10 . 1016 / j . ecolmodel . 2019 . 06 . 002. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub.elsevier.com/retrieve/pii/S0304380019302145.

     

    [36] H. A. Fayed and A. F. Atiya, “Speed up grid-search for parameter selection of support vector machines,” en, Applied Soft Computing, vol. 80, pp. 202–210, Jul. 2019, ISSN: 15684946. DOI: 10.1016/j. asoc.2019.03.037. Accessed: Mar. 16, 2024. [Online]. Available: https://linkinghub. elsevier.com/retrieve/pii/S1568494619301632.

     

    [37] R. Turner et al., “Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020,” en, in Proceedings of the NeurIPS 2020 Competition and Demonstration Track, PMLR, Aug. 2021, pp. 3–26. Accessed: Mar. 16, 2024. [Online]. Available: https://proceedings.mlr.press/v133/turner21a. html.

     

    [38] A. Djaafari et al., “Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions,” en, Energy Reports, vol. 8, pp. 15 548–15 562, Nov. 2022, ISSN: 23524847. DOI: 10 . 1016 / j . egyr . 2022 . 10 . 402. Accessed: Mar. 16, 2024. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve/pii/S2352484722023381.

    Cite This Article As :
    M., Marwa. Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems. Journal of Artificial Intelligence and Metaheuristics, vol. , no. , 2025, pp. 72-87. DOI: https://doi.org/10.54216/JAIM.100104
    M., M. (2025). Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems. Journal of Artificial Intelligence and Metaheuristics, (), 72-87. DOI: https://doi.org/10.54216/JAIM.100104
    M., Marwa. Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems. Journal of Artificial Intelligence and Metaheuristics , no. (2025): 72-87. DOI: https://doi.org/10.54216/JAIM.100104
    M., M. (2025) . Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems. Journal of Artificial Intelligence and Metaheuristics , () , 72-87 . DOI: https://doi.org/10.54216/JAIM.100104
    M. M. [2025]. Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems. Journal of Artificial Intelligence and Metaheuristics. (): 72-87. DOI: https://doi.org/10.54216/JAIM.100104
    M., M. "Network Requests Classification using Advanced Metaheuristic Optimization for Enhanced Network Security Systems," Journal of Artificial Intelligence and Metaheuristics, vol. , no. , pp. 72-87, 2025. DOI: https://doi.org/10.54216/JAIM.100104