Volume 8 , Issue 2 , PP: 19-26, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Bahaa El-Din Waleed 1 * , El-Sayed M. El-Kenawy 2 , Sherif Ibrahim 3 , Asmaa H.rabie 4 , Hossam El-Din Moustafa 5
Doi: https://doi.org/10.54216/JAIM.080203
Heart attacks, or myocardial infarctions, are a primary cause of mortality worldwide, underscoring the importance of early and accurate diagnosis to improve patient outcomes. This paper reviews various Artificial Intelligence (AI) and Machine Learning (ML) techniques for heart attack diagnosis, focusing on both traditional algorithms and more complex models. The traditional algorithms are Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Decision Trees (DT). More complex models are Convolutional Neural Networks (CNN), Extreme Gradient Boosting (XGBoost), Auto-encoders, Artificial Neural Networks (ANN), and TSK Fuzzy Inference System (TANFIS). Additionally, the integration of optimization techniques, including the Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Jellyfish Optimization Algorithm (JOA) is explored to enhance model accuracy by selecting the most important features. Our findings indicate that ensemble and hybrid models, which combine ML with metaheuristic optimization, show significant potential in improving diagnostic performance and reducing overfitting. However, challenges remain, particularly regarding computational complexity and interpretability. This study provides insights into the strengths and limitations of different AI-based diagnostic models, contributing to the advancement of automated heart disease prediction systems.
Diagnosis system , Feature selection , Heart attack , Optimization algorithms , Artificial Intelligence
[1] Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., … & Min, J. K. (2019). Machine learning in cardiovascular medicine: A review and future perspectives. Journal of the American College of Cardiology, 73(14), 1707-1716. doi:10.1016/j.jacc.2018.12.044
[2] Dey, S., Nandy, P., & Biswas, S. (2020). A comprehensive review on machine learning techniques for heart disease prediction. Biocybernetics and Biomedical Engineering, 40(4), 1577–1596.
[3] Nguyen, H., Nguyen, Q., & Le, P. (2021). A hybrid deep learning approach for the early prediction of cardiovascular disease. Computer Methods and Programs in Biomedicine, 200, 105949.
[4] Bresó, A., Monzón, A., & Fernández-Álamo, R. (2023). Deep learning-based heart disease prediction using electronic health records. Journal of Medical Systems, 47(3), 23.
[5] Zhang, Y., & Zhang, X. (2022). Enhancing heart disease diagnosis through machine learning and optimization techniques. Artificial Intelligence in Medicine, 127, 102226.
[6] Patel, V. M., Gaurav, S., & Chaudhary, S. (2021). Hybrid approach for heart disease prediction using data mining and optimization techniques. Expert Systems with Applications, 178, 114989.
[7] Taheri, S., Arabameri, A., & Samadi, S. (2022). Optimized support vector machine model for heart disease prediction based on genetic algorithms. BMC Medical Informatics and Decision Making, 22(1), 231.
[8] Singh, A., Thakur, S., & Sharma, M. (2022). Leveraging ensemble learning for the prediction of heart disease using optimized machine learning models. Journal of King Saud University - Computer and Information Sciences.
[9] Gupta, P., & Walia, R. (2023). A hybrid machine learning model for cardiovascular disease prediction using feature selection and ensemble methods. Journal of Biomedical Informatics, 139, 104198.
[10] Shokouhifar, M., Hasanvand, M., Moharamkhani, E., & Werner, F. (2024). Ensemble Heuristic–Metaheuristic Feature Fusion Learning for Heart Disease Diagnosis Using Tabular Data. Algorithms, 17(34).
[11] Ahmad, Ahmad Ayid, and Huseyin Polat. "Prediction of Heart Disease Based on Machine Learning Using Jellyfish Optimization Algorithm." Diagnostics, vol. 13, no. 2392, 2023.
[12] A. Jafar and M. Lee, "HypGB: High Accuracy GB Classifier for Predicting Heart Disease With HyperOpt HPO Framework and LASSO FS Method," IEEE Access, vol. 12, pp. 138201-138210, 2024. doi: 10.1109/ACCESS.2023.3339225
[13] Kadhim, Y.A.; Guzel, M.S.; Mishra, A. (2024). A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification. Diagnostics, 14, 1469.
[14] Sekar, J., Aruchamy, P., Abdul, H. S. L., Mohammed, A. S., & Khamuruddeen, S. (2021). An efficient clinical support system for heart disease prediction using TANFIS classifier. Computational Intelligence, 38(2), 610–640. doi:10.1111/coin.12487
[15] Purnomo, A., Barata, M. A., Soeleman, M. A., & Alzami, F. (2020). Adding feature selection on Naïve Bayes to increase accuracy on classification heart attack disease. Journal of Physics: Conference Series, 1511, 012001. doi:10.1088/1742-6596/1511/1/012001
[16] Winursito, A., Arifin, F., Nasuha, A., Priambodo, A. S., & Muslikhin. (2021). Design of Robust Heart Abnormality Detection System based on Wavelet Denoising Algorithm. Journal of Physics: Conference Series, 2111, 012048. doi:10.1088/1742-6596/2111/1/012048
[17] Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., … & Virani, S. S. (2019). “Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association.” Circulation, 139(10), e56-e528. doi:10.1161/CIR.0000000000000659
[18] Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., … & Tsao, C. W. (2021). “Heart Disease and Stroke Statistics—2021 Update: A Report from the American Heart Association.” Circulation, 143(8), e254-e743. doi:10.1161/CIR.0000000000000950
[19] Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., … & Murray, C. J. L. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. doi:10.1016/j.jacc.2020.11.010
[20] Arora, R., & Baghini, M. S. (2020). “Application of Support Vector Machine in classification of biomedical data.” IEEE Access, 8, 151464-151472
[21] Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A. E. (2020). “Linear discriminant analysis: A detailed tutorial.” AI Communications, 33(3), 169-190
[22] Rashidi, M., & Rahman, M. (2021). “Applications of logistic regression in data analysis and predictive modeling.” Advances in Intelligent Systems and Computing, 1173, 1013-1018.
[23] Pal, M., & Santanu, D. (2020). “A comprehensive review on Random Forest techniques in big data environment.” Big Data Research, 23, 100183
[24] Rajasekaran, A. M., & Sharma, N. (2020). “Enhanced Naive Bayes classifier for text classification.” Journal of Big Data, 7(1), 42
[25] Walia, R., & Kakkar, R. (2021). “Decision Trees: A Comprehensive Review and Future Research Directions.” Applied Artificial Intelligence, 35(9), 661-692
[26] Pan, X., & Wu, T. (2020). “Exploring the interpretability of XGBoost in mortality prediction for patients with COVID-19.” Journal of Biomedical Informatics, 103, 103380
[27] Zhang, Y., & Chen, W. (2021). “A review of convolutional neural networks in image and video analysis.” International Journal of Machine Learning and Cybernetics, 12(3), 611-636.
[28] Park, S., & Kim, Y. (2020). “Recent advances in autoencoder applications for unsupervised anomaly detection.” Electronics, 9(12), 2095.
[29] Liu, J., & Deng, Z. (2020). “An improved TSK fuzzy inference system for predicting multi-variable time series.” IEEE Access, 8, 141659-141669.
[30] Cheng, Y., & Chen, S. (2021). “The application of artificial neural networks in intelligent systems.” Neural Processing Letters, 53(3), 1689-1707.