Journal of Artificial Intelligence and Metaheuristics

Journal DOI

https://doi.org/10.54216/JAIM

Submit Your Paper

2833-5597ISSN (Online)

Volume 2 , Issue 1 , PP: 46-54, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble

Khadija Shazly 1 * , Nima Khodadadi 2

  • 1 Faculty of Computer and Information, Mansoura university, Egypt - (:khadijashazly@students.mans.edu.eg)
  • 2 University of Miami, 1251 Memorial Drive, Coral Gables, 33146, FL, USA - (nxk682@miami.edu)
  • Doi: https://doi.org/10.54216/JAIM.020105

    Received: May 11, 2022 Accepted: October 26, 2022
    Abstract

    Credit card use is rapidly increasing as a result of the widespread availability of these cards, the ease of making electronic transfers, and the ubiquity of online shopping. But credit card debt poses a serious risk to businesses and governments alike, not to mention individual savers and investors. Consequently, the need for efficient, timely, and reliable ways to anticipate credit card risk has grown. In this study, we offer a framework that combines three classifiers, namely, support vector machines, multilayer perceptron and decision trees, to improve the network's accuracy. The proposed strategy is shown to be very competitive with others through simulation.

    Keywords :

    Credit scoring , Credit card , Machine learning , Classification , Metaheuristic optimization , K-Nearest neighbor , Random Forest , Support vector machines

    References

    [1]  The comparisons of data mining techniques for the predictive accuracy of probability of default 

    of credit card clients  |  Semantic Scholar. https://www.semanticscholar.org/paper/Thecomparisonsof-data-mining-techniques-for-the-Yeh-Lien/1cacac4f0ea9fdff3cd88c151c94115a9fddcf33. 

    Accessed 6 Sep 2020

    [2]  Quantitative  methods  in  credit  management:  a  survey.  Oper  Res. 

    https://pubsonline.informs.org/doi/abs/10.1287/opre.42.4.589. Accessed 6 Sep 2020

    [3]  Bayesian  data  mining,  with  application  to  benchmarking  and  credit  scoring—Giudici—

    2001.Applied  stochastic  models  in  business  and  industry.  WileyOnline  Library. 

    https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.425. Accessed 6 Sep 2020

    [4]  Lee T-S, Chiu C-C, Lu C-J, Chen I-F (2002) Credit scoring using the hybrid neural discriminant

    technique. Expert Syst Appl 23(3):245–254. https://doi.org/10.1016/S0957-4174(02)00044-1

    [5]  Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. JMach

    Learn Res 5:1205–1224

    [6]  Yang Y, Pedersen J (1997) A comparative study on feature selection in text categorization

    [7]  Yan K, Zhang D (2015) Feature selection and analysis on correlated gas sensor data with recursive 

    feature  elimination.  Sens  Actuators  B  Chem  212:353–363. 

    https://doi.org/10.1016/j.snb.2015.02.025

    [8]  Jain  A,  Zongker  D  (1997)  Feature  selection:  evaluation,  application,  and  small  sample 

    performance.  IEEE  Trans  Pattern  Anal  Mach  Intell  19(2):153–158. 

    https://doi.org/10.1109/34.574797

    [9]  De  Stefanoc,  Fontanella  F,  Marrocco  C,  Scotto  di  FrecaA(2014)AGA -based  feature  selection

    approach with an application to handwritten  character recognition. Pattern  Recogn Lett 35:130–

    141. https://doi.org/10.1016/j.patrec.2013.01.026

    [10]  Zorarpacı E, Özel SA (2016) A hybrid approach of differential evolution and artificial bee colony 

    for feature selection. Expert Syst Appl 62:91–103. https://doi.org/10.1016/j.eswa.2016.06.004

    [11]  Too J, Abdullah AR, Mohd Saad N, Mohd Ali N, TeeW(2018) A new competitive binary grey

    wolf optimizer to solve the feature selection problem in EMG signals classification. Computers

    7(4), Art. no. 4. https://doi.org/10.3390/computers7040058

    [12]  Mirjalili  S,  Mirjalili  SM,  Lewis  A  (2014)  Grey  Wolf  Optimizer.  Adv  Eng  Softw  69:46–

    61.https://doi.org/10.1016/j.advengsoft.2013.12.007

    [13]  Binary  grey  wolf  optimization  approaches  for  feature  selection.  Request  PDF. 

    ResearchGate.https://www.researchgate.net/publication/280836997_Binary_Grey_Wolf_Optimi

    zation_Approaches_for_Feature_Selection. Accessed 6 Sep 2020

    [14]  Chuang L-Y, Chang H-W, Tu C-J, Yang C-H (2008) Improved binary PSO for feature selection 

    using  gene  expression  data.  Comput  Biol  Chem  32(1):29–38. 

    https://doi.org/10.1016/j.compbiolchem.2007.09.005

    [15]  Text  feature  selection  using  ant  colony  optimization  |  Request  PDF.  ResearchGate. 

    https://www.researchgate.net/publication/222669067_Text_feature_selection_using_ant_colony

    _optimization. Accessed 6 Sep 2020

    [16]  Feature  selection  with  discrete  binary  differential  evolution.  IEEE  conference  publication.

    https://ieeexplore.ieee.org/document/5376334. Accessed 6 Sep 2020

    [17]  Wright  RE  (1995)  “Logistic  regression”,  in  reading  and  understanding  multivariate  statistics.

    American Psychological Association, Washington, pp 217–244

    [18]  An  introduction  to  kernel  and  nearest-neighbor  nonparametric  regression:  The  American 

    statistician:  Vol  46,  No  3. 

    https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.Accessed 6 Sep 2020

    [19]  Statistical  Learning  Theory. Wiley.  https://www.wiley.com/en-us/Statistical+Learning+Theoryp-9780471030034. Accessed 6 Sep 2020

    [20]  Ting  KM,  Zheng  Z  (1999)  Improving  the  performance  of  boosting  for  Naive  Bayesian 

    classification. In: Methodologies for knowledge discovery and data mining, Berlin, Heidelberg, 

    pp 296–305, https://doi.org/10.1007/3-540-48912-6_41

    [21]  Quinlan  JR  (1986)  Induction  of  decision  trees.  Mach  Learn  1(1):81–106. 

    https://doi.org/10.1007/BF00116251

    [22]  Breiman  L  (2001)  Random  forests.  Mach  Learn  45(1):5–32. 

    https://doi.org/10.1023/A:1010933404324

    [23]  Dao S, Pham T (in press) Capacitated vehicle routing problem—a new clustering approach based 

    on  hybridization  of  adaptive  particle  swarm  optimization  and  grey  wolf  optimization.   In: 

    Evolutionary data clustering: algorithms, and applications. Springer

    Cite This Article As :
    Shazly, Khadija. , Khodadadi, Nima. Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble. Journal of Artificial Intelligence and Metaheuristics, vol. , no. , 2022, pp. 46-54. DOI: https://doi.org/10.54216/JAIM.020105
    Shazly, K. Khodadadi, N. (2022). Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble. Journal of Artificial Intelligence and Metaheuristics, (), 46-54. DOI: https://doi.org/10.54216/JAIM.020105
    Shazly, Khadija. Khodadadi, Nima. Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble. Journal of Artificial Intelligence and Metaheuristics , no. (2022): 46-54. DOI: https://doi.org/10.54216/JAIM.020105
    Shazly, K. , Khodadadi, N. (2022) . Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble. Journal of Artificial Intelligence and Metaheuristics , () , 46-54 . DOI: https://doi.org/10.54216/JAIM.020105
    Shazly K. , Khodadadi N. [2022]. Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble. Journal of Artificial Intelligence and Metaheuristics. (): 46-54. DOI: https://doi.org/10.54216/JAIM.020105
    Shazly, K. Khodadadi, N. "Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble," Journal of Artificial Intelligence and Metaheuristics, vol. , no. , pp. 46-54, 2022. DOI: https://doi.org/10.54216/JAIM.020105